1 |
DUBAL D P, AYYAD O, RUIZ V, et al. Hybrid energy storage: The merging of battery and supercapacitor chemistries[J]. Chemical Society Reviews, 2015, 44(7): 1777-1790.
|
2 |
WANG G P, ZHANG L, ZHANG J J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41(2): 797-828.
|
3 |
WANG H, ZHU C, CHAO D, et al. Nonaqueous hybrid lithium-ion and sodium-ion capacitors[J]. Advanced Materials, 2017, 29(46): 1702039
|
4 |
LAHEAAR A, JANES A, LUST E. Electrochemical properties of carbide-derived carbon electrodes in non-aqueous electrolytes based on different Li-salts[J]. Electrochimica Acta, 2011, 56(25): 9048-9055.
|
5 |
WANG H W, ZHANG Y, ANG H X, et al. A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode[J]. Advanced Functional Materials, 2016, 26(18): 3082-3093.
|
6 |
LI B, ZHENG J, ZHANG H, et al. Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors[J]. Advanced Materials, 2018, 30(17): 1705670.
|
7 |
ZHENG J P. High energy density electrochemical capacitors without consumption of electrolyte[J]. Journal of the Electrochemical Society, 2009, 156(7): A500-A505.
|
8 |
黄晓斌, 张熊, 韦统振, 等. 超级电容器的发展及应用现状[J]. 电工电能新技术, 2017, 36(11): 63-70.
|
|
HUANG X B, ZHANG X, WEI T Z, et al. Development and application status of super capacitors[J]. Advanced Technology of Electrical Engineering and Energy, 2017, 36(11): 63-70.
|
9 |
LI C, ZHANG X, SUN C, et al. Recent progress of graphene-based materials in lithium-ion capacitors[J]. Journal of Physics D: Applied Physics, 2019, 52(14): 3001.
|
10 |
张熊, 马衍伟. 电化学超级电容器电极材料的研究进展[J]. 物理, 2011, 40(10): 656-663.
|
|
ZHANG X, MA Y W. Recent advances in the development of electrode materials for supercapacitor[J]. Physical, 2011, 40(10): 656-663.
|
11 |
刘文杰, 孙现众, 郝青丽. 电化学沉积制备MnO2-PEDOT-PSS复合材料及其电容特性研究[J]. 储能科学与技术, 2018, 7(2): 262-269.
|
|
LIU W J, SUN X Z, HAO Q L. Electrochemical deposition of MnO2/PEDOT-PSS composite and its capacitance characteristics[J]. Energy Storage Science and Technology, 2018, 7(2): 262-269.
|
12 |
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
|
13 |
VELICKY M, BRADLEY D F, COOPER A J, et al. Electron transfer kinetics on mono-and multilayer graphene[J]. ACS Nano, 2014, 8(10): 10089-10100.
|
14 |
SEOL J H, JO I, MOORE A L, et al. Two-dimensional phonon transport in supported graphene[J]. Science, 2010, 328(5975): 213-216.
|
15 |
ZHANG X, ZHANG H T, LI C, et al. Recent advances in porous graphene materials for supercapacitor applications[J]. RSC Advances, 2014, 4(86): 45862-45884.
|
16 |
EL-KADY M F, SHAO Y L, KANER R B. Graphene for batteries, supercapacitors and beyond[J]. Nature Reviews Materials, 2016, 1(7): 16033.
|
17 |
WANG Y G, SONG Y F, XIA Y Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications[J]. Chemical Society Reviews, 2016, 45(21): 5925-5950.
|
18 |
SIVAKUMAR C, NIAN J N, TENG H S. Poly(o-toluidine) for carbon fabric electrode modification to enhance the electrochemical capacitance and conductivity[J]. Journal of Power Sources, 2005, 144(1): 295-301.
|
19 |
LIU J. Charging graphene for energy[J]. Nature Nanotechnology, 2014, 9(10): 739-741.
|
20 |
LEE J H, SHIN W H, RYOU M H, et al. Functionalized graphene for high performance lithium ion capacitors[J]. ChemSusChem, 2012, 5(12): 2328-2333.
|
21 |
MHAMANE D, ARAVINDAN V, KIM M S, et al. Silica-assisted bottom-up synthesis of graphene-like high surface area carbon for highly efficient ultracapacitor and li-ion hybrid capacitor applications[J]. Journal of Materials Chemistry A, 2016, 4(15): 5578-5591.
|
22 |
LI H, SHEN L, WANG J, FANG S, et al. Three-dimensionally ordered porous TiNb2O7 nanotubes: A superior anode material for next generation hybrid supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(32): 16785-16790.
|
23 |
GOKHALE R, ARAVINDAN V, YADAV P, et al. Oligomer-salt derived 3D, heavily nitrogen doped, porous carbon for Li-ion hybrid electrochemical capacitors application[J]. Carbon, 2014, 80: 462-471.
|
24 |
ZHANG T, ZHANG F, ZHANG L, et al. High energy density Li-ion capacitor assembled with all graphene-based electrodes[J]. Carbon, 2015, 92: 106-118.
|
25 |
ZHANG L, ZHANG F, YANG X, et al. Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors[J]. Scientific Reports, 2013, 3: 1408.
|
26 |
YOSHIO M, WANG H Y, FUKUDA K, et al. Effect of carbon coating on electrochemical performance of treated natural graphite as lithium-ion battery anode material[J]. Journal of the Electrochemical Society, 2000, 147(4): 1245-1250.
|
27 |
YOO E, KIM J, HOSONO E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries[J]. Nano Letters, 2008, 8(8): 2277-2282.
|
28 |
WU Z S, REN W C, XU L, et al. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries[J]. ACS Nano, 2011, 5(7): 5463-5471.
|
29 |
孙现众, 张熊, 王凯, 等. 高能量密度的锂离子混合型电容器[J]. 电化学, 2017, 23(5): 586-603.
|
|
SUN X Z, ZHANG X, WANG K, et al. High energy density lithium ion hybrid capacitor[J]. Electrochemistry, 2017, 23(5): 586-603.
|
30 |
REN J J, SU L W, QIN X, et al. Pre-lithiated graphene nanosheets as negative electrode materials for Li-ion capacitors with high power and energy density[J]. Journal of Power Sources, 2014, 264: 108-113.
|
31 |
SUN Y, TANG J, QIN F, et al. Hybrid lithium-ion capacitors with asymmetric graphene electrodes[J]. Journal of Materials Chemistry A, 2017, 5(26): 13601-13609.
|
32 |
LI C, ZHANG X, WANG K, et al. Scalable self-propagating high-temperature synthesis of graphene for supercapacitors with superior power density and cyclic stability[J]. Advance Materials, 2017, 29(7): 1604690.
|
33 |
LI C, ZHANG X, WANG K, et al. High-power and long-life lithium-ion capacitors constructed from N-doped hierarchical carbon nanolayer cathode and mesoporous graphene anode[J]. Carbon, 2018, 140: 237-248.
|
34 |
ASWATHY R, KESAVAN T, KUMARAN K T, et al. Octahedral high voltage LiNi0.5Mn1.5O4 spinel cathode: enhanced capacity retention of hybrid aqueous capacitors with nitrogen doped graphene[J]. Journal of Materials Chemistry A, 2015, 3(23): 12386-12395.
|
35 |
LIU M, ZHANG L X, HAN P X, et al. Controllable formation of niobium nitride/nitrogen-doped graphene nanocomposites as anode materials for lithium-ion capacitors[J]. Particle & Particle Systems Characterization, 2015, 32(11): 10061011.
|
36 |
WU A S, TAN Y Z, ZHENG S H, et al. Bottom-up fabrication of sulfur-doped graphene films derived from sulfur-annulated nanographene for ultrahigh volumetric capacitance micro-supercapacitors[J]. Journal of the American Chemical Society, 2017, 139(12): 4506-4512.
|
37 |
ZHANG X L, LU Z S, FU Z M, et al. The mechanisms of oxygen reduction reaction on phosphorus doped graphene: A first-principles study[J]. Journal of Power Sources, 2015, 276: 222-229.
|
38 |
LUAN Y T, HU R, FANG Y Z, et al. Nitrogen and phosphorus dual-doped multilayer graphene as universal anode for full carbon-based lithium and potassium ion capacitors[J]. Nano-Micro Letters, 2019, 11(1): 30.
|
39 |
BOKHARI S W, SIDDIQUE A H, PAN H, et al. Nitrogen doping in the carbon matrix for Li-ion hybrid supercapacitors: State of the art, challenges and future prospective[J]. RSC Advances, 2017, 7(31): 18926-18936.
|
40 |
JIAO X Y, HAO Q L, LIU P, et al. Facile synthesis of T-Nb2O5 nanosheets/nitrogen and sulfur co-doped graphene for high performance lithium-ion hybrid supercapacitors[J]. Science China Materials, 2018, 61(2): 273-284.
|
41 |
YUAN T, TAN Z P, MA C R, et al. Challenges of spinel Li4Ti5O12 for lithium-ion battery industrial applications[J]. Advanced Energy Materials, 2017, 7(12): 1601625.
|
42 |
LENG K, ZHANG F, ZHANG L, et al. Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance[J]. Nano Research, 2013, 6(8): 581-592.
|
43 |
AJURIA J, ARNAIZ M, BOTAS C, et al. Graphene-based lithium ion capacitor with high gravimetric energy and power densities[J]. Journal of Power Sources, 2017, 363: 422-427.
|
44 |
VELMURUGAN V, SRINIVASARAO U, RAMACHANDRAN R, et al. Synthesis of Tin oxide/graphene (SnO2/G) nanocomposite and its electrochemical properties for supercapacitor applications[J]. Materials Research Bulletin, 2016, 84: 145-151.
|
45 |
KIM H K, ARAVINDAN V, ROH M H K, et al. Exploring high-energy Li-ion batteries and capacitors with conversion-type Fe3O4-RGO as the negative electrode[J]. ChemElectroChem, 2017, 4(10): 2626-2633.
|
46 |
ZHANG S, LI C, ZHANG X, et al. High performance lithium-ion hybrid capacitors employing Fe3O4-graphene composite anode and activated carbon cathode[J]. ACS Applied Materials Interfaces, 2017, 9(20): 17136-17144.
|
47 |
ZHAO X R, ZHANG X, LI C, et al. High-performance lithium-ion capacitors based on CoO-graphene composite anode and holey carbon nanolayer cathode[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11275-11283.
|
48 |
赵兴茹, 安琪, 马向东, 等. 金属氧化物作为锂离子电容器负极的研究进展[J]. 储能科学与技术, 2018, 7(4): 555-564.
|
|
ZHAO X R, AN Q, MA X D, et al. Research progress of metal oxides as anodes for lithium ion capacitor[J]. Energy Storage Science and Technology, 2018, 7(4): 555-564.
|