储能科学与技术 ›› 2020, Vol. 9 ›› Issue (4): 1015-1029.doi: 10.19799/j.cnki.2095-4239.2020.0216
起文斌(), 张华, 金周, 季洪祥, 田孟羽, 武怿达, 詹元杰, 田丰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰()
收稿日期:
2020-06-18
出版日期:
2020-07-05
发布日期:
2020-06-30
通讯作者:
黄学杰
E-mail:qiwenbin16@mails.ucas.edu.cn;xjhuang@jphy.ac.an
作者简介:
起文斌(1992—),男,硕士研究生,研究方向为固态锂离子电池正极材料,E-mail:QI"Wenbin(), ZHANG"Hua, JIN"Zhou, JI"Hongxiang, TIAN"Mengyu, WU"Yida, ZHAN"Yuanjie, TIAN"Feng, YAN"Yong, BEN"Liubin, YU"Hailong, LIU"Yanyan, HUANG"Xuejie()
Received:
2020-06-18
Online:
2020-07-05
Published:
2020-06-30
Contact:
Xuejie HUANG
E-mail:qiwenbin16@mails.ucas.edu.cn;xjhuang@jphy.ac.an
摘要:
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2020年4月1日至2020年5月31日上线的锂电池研究论文,共有3260篇,选择其中100篇加以评论。正极材料的研究主要集中在对高镍三元和高压钴酸锂的表面改性和体相掺杂,以及其在长循环过程中或高电压下所发生的表面和体相的结构演变。硅基复合负极材料的研究侧重于对电极结构的设计,金属锂负极的研究侧重于通过电极结构的设计来调控SEI的生长以及抑制锂枝晶的形成。固态电解质的研究主要包括对氧化物固态电解质、硫化物固态电解质、聚合物固态电解质以及复合固态电解质的结构设计以及相关性能研究。液态电解液方面主要涉及对溶剂、锂盐以及添加剂的选择优化设计。固态电池、锂硫电池的论文也有多篇。测试技术方面偏重于用原位方法对材料结构的演变以及SEI的生长等进行观测和分析,同时也有多篇涉及到对电池热失控的研究。此外,还有多篇论文用理论计算对材料的电子结构以及锂离子的输运和沉积进行了探讨。
中图分类号:
起文斌, 张华, 金周, 季洪祥, 田孟羽, 武怿达, 詹元杰, 田丰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2020.04.01—2020.05.31)[J]. 储能科学与技术, 2020, 9(4): 1015-1029.
QI Wenbin, ZHANG Hua, JIN Zhou, JI Hongxiang, TIAN Mengyu, WU Yida, ZHAN Yuanjie, TIAN Feng, YAN Yong, BEN Liubin, YU Hailong, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries(Apr. 01, 2020 to May 31, 2020)[J]. Energy Storage Science and Technology, 2020, 9(4): 1015-1029.
1 | KARAYAYLALI P, TATARA R, ZHANG Y, et al. Coating-dependent electrode-electrolyte interface for Ni-rich positive electrodes in Li-ion batteries[J]. Journal of the Electrochemical Society, 2019, 166(6): A1022-A1030. |
2 | CHOI J, LEE S Y, YOON S, et al. The role of Zr doping in stabilizing LiNi0.6Co0.2Mn0.2O2 as a cathode material for lithium-ion batteries[J]. ChemSusChem, 2019, 12(11): 2439-2446. |
3 |
LI J, MANTHIRAM A. A comprehensive analysis of the interphasial and structural evolution over long-term cycling of ultrahigh-nickel cathodes in lithium-ion batteries[J]. Advanced Energy Materials, 2019, doi: 10.1002/aenm.201902731.
doi: 10.1002/aenm.201902731 |
4 |
CHENG X, LIU M, YIN J, et al. Regulating surface and grain-boundary structures of Ni-rich layered cathodes for ultrahigh cycle stability[J]. Small, 2020, 16(13): doi: DOI: 10.1002/smll.201906433.
doi: 10.1002/smll.201906433 |
5 | FAN X, HU G, ZHANG B, et al. Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries[J]. Nano Energy, 2020, 70: doi: 10.1016/j.nanoen.2020.104450. |
6 |
SONG S H, CHO M, PARK I, et al. High-voltage-driven surface structuring and electrochemical stabilization of Ni-rich layered cathode materials for Li rechargeable batteries[J]. Advanced Energy Materials, 2020, doi: 10.1002/aenm.202000521.
doi: 10.1002/aenm.202000521 |
7 | XIA S, HUANG W, SHEN X, et al. Rearrangement on surface structures by boride to enhanced cycle stability for LiNi0.80Co0.15Al0.05O2 cathode in lithium ion batteries[J]. Journal of Energy Chemistry, 2020, 45: 110-118. |
8 |
ZHENG J, YANG Z, DAI A, et al. Boosting cell performance of LiNi0.8Co0.15Al0.05O2 via surface structure design[J]. Small, 2019, doi: 10.1002/smll.201904854.
doi: 10.1002/smll.201904854 |
9 | SHARIFI-ASL S, SOTO F A, FOROOZAN T, et al. Anti-oxygen leaking LiCoO2[J]. Advanced Functional Materials, 2019, 29(23):doi.org/10.1002/adfm.201901110. |
10 | ZHANG J N, LI Q, OUYANG C, et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V[J]. Nature Energy, 2019, 4(7): 594-603. |
11 | OZKENDIR O M, HARFOUCHE M, ULFAT I, et al. Boron activity in the inactive Li2MnO3 cathode material[J]. Journal of Electron Spectroscopy and Related Phenomena, 2019, 235: 23-28. |
12 | SHARIFI-ASL S, YURKIV V, GUTIERREZ A, et al. Revealing grain-boundary-induced degradation mechanisms in Li-rich cathode materials[J]. Nano Letters, 2020, 20(2): 1208-1217. |
13 | PAN K, HU C, SUN Z, et al. Structural and electrochemical characterization of LiMn2O4 and Li1.05Mn1.97Nb0.03O4 with excellent high-temperature cycling stability synthesized by a simple route[J]. Journal of Applied Electrochemistry, 2020, 50(4): 451-462. |
14 |
LIANG G, WU Z, DIDIER C, et al. A long cycle-life high-voltage spinel lithium-ion battery electrode achieved by site-selective doping[J]. Angewandte Chemie-International Edition, 2020, doi: 10.1002/anie.202001454.
doi: 10.1002/anie.202001454 |
15 | ZHU R, ZHANG S, GUO Q, et al. More than just a protection layer: Inducing chemical interaction between Li3BO3 and LiNi0.5Mn1.5O4 to achieve stable high-rate cycling cathode materials[J]. Electrochimica Acta, 2020, 342: doi: 10.1016/j.electacta.2020.136074. |
16 | DE LA TORRE-GAMARRA C, EUGENIA SOTOMAYOR M, SANCHEZ J Y, et al. High mass loading additive-free LiFePO4 cathodes with 500 μm thickness for high areal capacity Li-ion batteries[J]. Journal of Power Sources, 2020, 458: doi: 10.1016/j.jpowsour.2020.228033. |
17 |
ZHAO C, CHEN Z, WANG W, et al. In situ electropolymerization enables ultrafast long cycle life and high-voltage organic cathodes for lithium batteries[J]. Angewandte Chemie-International Edition, 2020, doi: 10.1002/anie.202000566.
doi: 10.1002/anie.202000566 |
18 |
CHEN X R, YAO Y X, YAN C, et al. A diffusion-reaction competition mechanism to tailor lithium deposition for lithium-metal batteries[J]. Angewandte Chemie-International Edition, 2020, doi: 10.1002/anie.202000375.
doi: 10.1002/anie.202000375 |
19 | CUI C, YANG C, EIDSON N, et al. A highly reversible, dendrite-free lithium metal anode enabled by a lithium-fluoride-enriched interphase[J]. Advanced Materials, 2020, 32(12):doi/abs/101002/aenm.201903993. |
20 | GAO X, YANG X, ADAIR K, et al. 3D vertically aligned Li metal anodes with ultrahigh cycling currents and capacities of 10 mA cm-2/20 mA·h/cm2 realized by selective nucleation within microchannel walls[J]. Advanced Energy Materials, 2020, 10(7): doi: 10.1002/aenm.201903753. |
21 | HONG S H, JUNG D H, KIM J H, et al. Electrical conductivity gradient based on heterofibrous scaffolds for stable lithium-metal batteries[J]. Advanced Functional Materials, 2020, 30(14): doi: 10.1002/adfm.201908868. |
22 | YIN Y C, WANG Q, YANG J T, et al. Metal chloride perovskite thin film based interfacial layer for shielding lithium metal from liquid electrolyte[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-15643-9. |
23 | ZHANG X, XIANG Q, TANG S, et al. Long cycling life solid-state Li metal batteries with stress self-adapted Li/garnet interface[J]. Nano Letters, 2020, 20(4): 2871-2878. |
24 |
SHI K, WAN Z, YANG L, et al. In situ construction of an ultra-stable conductive composite interface for high-voltage all-solid-state lithium metal batteries[J]. Angewandte Chemie-International Edition, 2020, doi: 10.1002/anie.202000547.
doi: 10.1002/anie.202000547 |
25 | LEE Y G, FUJIKI S, JUNG C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes[J]. Nature Energy, 2020, 5(4): 299-308. |
26 | XIE H, SAYED S Y, KALISVAART W P, et al. Adhesion and surface layers on silicon anodes suppress formation of c-Li3.75Si and solid-electrolyte interphase[J]. ACS Applied Energy Materials, 2020, 3(2): 1609-1616. |
27 | CHEN L, ZHENG J, LIN S, et al. Synthesis of SiOx/C composite nanosheets as high-rate and stable anode materials for lithium-ion batteries[J]. ACS Applied Energy Materials, 2020, 3(4): 3562-3568. |
28 | HUANG G, HAN J, LU Z, et al. Ultrastable silicon anode by three-dimensional nanoarchitecture design[J]. ACS Nano, 2020, 14(4): 4374-4382. |
29 | ZHOU J, ZHAO H, LIN N, et al. Silicothermic reduction reaction for fabricating interconnected Si-Ge nanocrystals with fast and stable Li-storage[J]. Journal of Materials Chemistry A, 2020, 8(14): 6597-6606. |
30 | CHENG Z, HU Y, WU K, et al. Si/TiO2/Ti2O3 composite carbon nanofiber by one-step heat treatment with highly enhanced ion/electron diffusion rates for next-generation lithium-ion batteries[J]. Electrochimica Acta, 2020, 337: doi: 10.1016/j.electacta.2020.135789. |
31 | JIA H, LI X, SONG J, et al. Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-15217-9. |
32 | KUMAR P, BERHAUT C L, ZAPATA DOMINGUEZ D, et al. Nano-architectured composite anode enabling long-term cycling stability for high-capacity lithium-ion batteries[J]. Small, 2020, 16(11): doi: 10.1002/smll.201906812. |
33 | MA L, MENG J, PAN Y, et al. Microporous binder for the silicon-based lithium-ion battery anode with exceptional rate capability and improved cyclic performance[J]. Langmuir, 2020, 36(8): 2003-2011. |
34 | GONG X, ZHENG Y, ZHENG J, et al. Surface-functionalized graphite as long cycle life anode materials for lithium-ion batteries[J]. Chemelectrochem, 2020, 7(6): 1465-1472. |
35 |
DENG S, ZHU H, LIU B, et al. Synergy of ion doping and spiral array architecture on Ti2Nb10O29: A new way to achieve high-power electrodes[J]. Advanced Functional Materials, 2020, doi: 10.1002/adfm.202002665.
doi: 10.1002/adfm.202002665 |
36 | JIANG T, HE P, WANG G, et al. Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries[J]. Advanced Energy Materials, 2020, 10(12): doi: 10.1002/aenm.201903376. |
37 | WU N, CHIEN P H, QIAN Y, et al. Enhanced surface interactions enable fast Li+ conduction in oxide/polymer composite electrolyte[J]. Angewandte Chemie-International Edition, 2020, 59(10): 4131-4137. |
38 |
DUAN H, CHEN W P, FAN M, et al. Building an air stable and lithium deposition regulable garnet interface from moderate-temperature conversion chemistry[J]. Angewandte Chemie-International Edition, 2020, doi: 10.1002/anie.202003177.
doi: 10.1002/anie.202003177 |
39 | NAGATA H, CHIKUSA Y, AKIMOTO J. A high rate performance positive composite electrode using a high P/S ratio and LiI composite solid electrolyte for an all-solid-state Li-S battery[J]. Journal of Power Sources, 2020, 453: doi.org/10.1016/.jpowsour.2020.227905. |
40 | SASAKI I, HONDA K, ASANO T, et al. Enhancement of the rate capabilities for all-solid-state batteries through the surface oxidation of sulfide solid electrolytes[J]. Solid State Ionics, 2020, 347: doi.org/10.1016/j.ssi.2020.115249. |
41 | CAO D, ZHANG Y, NOLAN A M, et al. Stable thiophosphate-based all-solid-state lithium batteries through conformally interfacial nanocoating[J]. Nano Letters, 2020, 20(3): 1483-1490. |
42 |
GARCIA-MENDEZ R, SMITH J G, NEUEFEIND J C, et al. Correlating macro and atomic structure with elastic properties and ionic transport of glassy Li2S-P2S5 (LPS) solid electrolyte for solid-state Li metal batteries[J]. Advanced Energy Materials, 2020, doi: 10.1002/aenm.202000335.
doi: 10.1002/aenm.202000335 |
43 | ABELS G, BARDENHAGEN I, SCHWENZEL J. One-pot synthesis of polymeric LiPON[J]. Polymer, 2020, 192: doi: 10.1016/j.polymer.2020.122300. |
44 | ZHAO C Z, ZHAO Q, LIU X, et al. Rechargeable lithium metal batteries with an in-built solid-state polymer electrolyte and a high voltage/loading Ni-rich layered cathode[J]. Advanced Materials, 2020, 32(12): doi: 10.1002/adma.201905629. |
45 | LIU F, LIU J. Agarose based solid electrolyte for all-solid-state lithium ion batteries working from -20℃ to 80℃[J]. Journal of the Electrochemical Society, 2020, 167(8): doi: 10.1149/1945-7111/ab8925. |
46 | AHMED F, CHOI I, RYU T, et al. Highly conductive divalent fluorosulfonyl imide based electrolytes improving Li-ion battery performance: Additive potentiating electrolytes action[J]. Journal of Power Sources, 2020, 455: doi: 10.1016/j.jpowsour.2020.227980. |
47 | CHO S J, YU D E, POLLARD T P, et al. Nonflammable lithium metal full cells with ultra-high energy density based on coordinated carbonate electrolytes[J]. Iscience, 2020, 23(2): |
doi.org/10.1016/j.isci.2020.100844. | |
48 | EHTESHAMI N, IBING L, STOLZ L, et al. Ethylene carbonate-free electrolytes for Li-ion battery: Study of the solid electrolyte interphases formed on graphite anodes[J]. Journal of Power Sources, 2020, 451: doi: 10.1016/j.isci.2020.100844. |
49 | ASPERN N VON, LEISSING M, WOELKE C, et al. Non-flammable fluorinated phosphorus(iii)-based electrolytes for advanced lithium-ion battery performance[J]. Chemelectrochem, 2020, 7(6): 1499-1508. |
50 | LIU J, ZHOU L, YU W, et al. Effect of fluoroethylene carbonate as an electrolyte solvent in the LiNi0.5Mn1.5O4/Li4Ti5O12 cell[J]. Journal of Alloys and Compounds, 2020, 812: doi: 10.5229/JECST.2017.8.1.53. |
51 |
ZHANG X, ZOU L, XU Y, et al. Advanced electrolytes for fast-charging high-voltage lithium-ion batteries in wide-temperature range[J]. Advanced Energy Materials, 2020, doi: 10.1002/aenm.202000368.
doi: 10.1002/aenm.202000368 |
52 |
CHEN J, FAN X, LI Q, et al. Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries[J]. Nature Energy, 2020, doi: 10.1038/s41560-020-0601-1.
doi: 10.1038/s41560-020-0601-1 |
53 | GU Y, FANG S, ZHANG X, et al. A non-flammable electrolyte for lithium-ion batteries containing lithium difluoro(oxalato)borate, propylene carbonate and tris(2,2,2-trifluoroethyl)phosphate[J]. Journal of the Electrochemical Society, 2020, 167(8): doi: 10.1149/1.3473828. |
54 |
KO S, YAMADA Y, YAMADA A. A 4.8 V reversible Li2CoPO4F/graphite battery enabled by concentrated electrolytes and optimized cell design[J]. Batteries & Supercaps, 2020, doi: 10.1002/batt.202000050.
doi: 10.1002/batt.202000050 |
55 | ZHENG Q, YAMADA Y, SHANG R, et al. A cyclic phosphate-based battery electrolyte for high voltage and safe operation[J]. Nature Energy, 2020, 5(4): 291-298. |
56 | ZHAO D, WANG J, LU H, et al. Tailoring interfacial architecture of high-voltage cathode with lithium difluoro(bisoxalato) phosphate for high energy density battery[J]. Journal of Power Sources, 2020, 456: doi: 10.1016/j.jpowsour.2020.228006. |
57 | CUI Y, WANG Y, GU S, et al. An effective interface-regulating mechanism enabled by non-sacrificial additives for high-voltage nickel-rich cathode[J]. Journal of Power Sources, 2020, 453: doi: 10.1016/j.jpowsour.2020.227852. |
58 | EISELE L, LASZCZYNSKI N, SCHNEIDER M, et al. Preparation of BF3 carbonates and their electrochemical investigation as additives in lithium ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(6): doi: 10.1149/1945-7111/ab80ad. |
59 | LIU W, SHI Y, ZHUANG Q, et al. Ethylene glycol bis(propionitrile) ether as an additive for SEI film formation in lithium-ion batteries[J]. International Journal of Electrochemical Science, 2020, 15(5): 4722-4738. |
60 | JIANG L, LIANG C, LI H, et al. Safer triethyl-phosphate-based electrolyte enables nonflammable and high-temperature endurance for a lithium ion battery[J]. ACS Applied Energy Materials, 2020, 3(2): 1719-1729. |
61 | LI J, WANG Z. Triethyl borate and tripropyl borate as electrolyte additives for 4.8 V high voltage layered lithium-rich oxide cathode with enhanced self-discharge suppression performance: A comparative study[J]. Journal of Power Sources, 2020, 450: https://doi.org/10.1016/j.jpowsour.2019.227648. |
62 | WALTON J J, HIASA T, KUMITA H, et al. Fluorocyanoesters as additives for lithium-ion battery electrolytes[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15893-15902. |
63 | PARK H, KIM H J. Diphenyl diselenide as SEI-forming additive for a high-voltage LiCoO2/graphite battery[J]. Journal of the Electrochemical Society, 2020, 167(7): doi: 10.1149/1945-7111/ab80cf. |
64 | XIANG F, WANG P, CHENG H. Methyl 2,2-difluoro-2-(fluorosulfonyl) acetate as a novel electrolyte additive for high-voltage LiCoO2/graphite pouch Li-ion cells[J]. Energy Technology, 2020, 8(5):doi.org/10.1002/ente.201901277. |
65 | YAN X, CHEN C, ZHU X, et al. Aminoalkyldisiloxane as effective electrolyte additive for improving high temperature cycle life of nickel-rich LiNi0.6Co0.2Mn0.2O2/graphite batteries[J]. Journal of Power Sources, 2020, 461: doi: 10.1016/j.jpowsour.2020.228099. |
66 | YANG J, SHKROB I, LIU K, et al. 4-(trimethylsilyl) morpholine as a multifunctional electrolyte additive in high voltage lithium ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(7): doi: 10.1149/1945-7111/ab7a9e. |
67 | KIM K, HWANG D, KIM S, et al. Cyclic aminosilane-based additive ensuring stable electrode-electrolyte interfaces in Li-ion batteries[J]. Advanced Energy Materials, 2020, 10(15): doi: 10.1002/aenm.202000012. |
68 | CHOUDHURY S, TU Z, NIJAMUDHEEN A, et al. Stabilizing polymer electrolytes in high-voltage lithium batteries[J]. Nature Communications, 2019, 10: doi: 10.1038/s41467-019-11015-0. |
69 | HAGOS T T, SU W N, HUANG C J, et al. Developing high-voltage carbonate-ether mixed electrolyte via anode-free cell configuration[J]. Journal of Power Sources, 2020, 461: doi: 10.1016/j.jpowsour.2020.228053. |
70 | DENG S, SUN Y, LI X, et al. Eliminating the detrimental effects of conductive agents in sulfide-based solid-state batteries[J]. ACS Energy Letters, 2020, 5(4): 1243-1251. |
71 | NAKAMURA H, KAWAGUCHI T, MASUYAMA T, et al. Dry coating of active material particles with sulfide solid electrolytes for an all-solid-state lithium battery[J]. Journal of Power Sources, 2020, 448: doi: 10.1016/j.jpowsour.2019.227579. |
72 | LI X, LIANG J, BANIS M N, et al. Totally compatible P4S10+n cathodes with self-generated Li+ pathways for sulfide-based all-solid-state batteries[J]. Energy Storage Materials, 2020, 28: 325-333. |
73 | DEVAUX D, VILLALUENGA I, JIANG X, et al. Lithium-sulfur batteries with a block copolymer electrolyte analyzed by X-ray microtomography[J]. Journal of the Electrochemical Society, 2020, 167(6): doi: 10.1149/1945-7111/ab7c6c. |
74 | WANG Y, LIU T, ESTEVEZ L, et al. Kinetics of all-solid-state sulfur cathodes[J]. Energy Storage Materials, 2020, 27: 232-243. |
75 | HOMANN G, MEISTER P, STOLZ L, et al. High-voltage all-solid-state lithium battery with sulfide-based electrolyte: Challenges for the construction of a bipolar multicell stack and how to overcome them[J]. ACS Applied Energy Materials, 2020, 3(4): 3162-3168. |
76 | LI S, MA J, ZENG Z, et al. Enhancing the kinetics of lithium-sulfur batteries under solid-state conversion by using tellurium as a eutectic accelerator[J]. Journal of Materials Chemistry A, 2020, 8(6): 3405-3412. |
77 | WANG J, JIA L, DUAN S, et al. Single atomic cobalt catalyst significantly accelerates lithium ion diffusion in high mass loading Li2S cathode[J]. Energy Storage Materials, 2020, 28: 375-382. |
78 | CHEN J, ZHANG H, YANG H, et al. Towards practical Li-S battery with dense and flexible electrode containing lean electrolyte[J]. Energy Storage Materials, 2020, 27: 307-315. |
79 | LEMARIE Q, MAIRE E, IDRISSI H, et al. Sulfur-based electrode using a polyelectrolyte binder studied via coupled in situ synchrotron X-ray diffraction and tomography[J]. ACS Applied Energy Materials, 2020, 3(3): 2422-2431. |
80 |
HOU C, HAN J, LIU P, et al. Operando observations of SEI film evolution by mass-sensitive scanning transmission electron microscopy[J]. Advanced Energy Materials, 2019, doi: 10.1002/aenm.201902675.
doi: 10.1002/aenm.201902675 |
81 | LIU S, ZENG X, LIU D, et al. Understanding the conductive carbon additive on electrode/electrolyte interface formation in lithium-ion batteries via in situ scanning electrochemical microscopy[J]. Frontiers in Chemistry, 2020, 8: doi: 10.3389/fchem.2020.00114. |
82 | KIM S, JUNG C, KIM H, et al. The role of interlayer chemistry in Li-metal growth through a garnet-type solid electrolyte[J]. Advanced Energy Materials, 2020, 10(12): doi: 10.1002/aenm.201903993. |
83 | MAIBACH J, KALLQUIST I, ANDERSSON M, et al. Probing a battery electrolyte drop with ambient pressure photoelectron spectroscopy[J]. Nature Communications, 2019, 10: doi: 10.1038/s41467-019-10803-y. |
84 | MALABET H J G, ROBLES D J, DE ANDRADE V, et al. In operando XANES imaging of high capacity intermetallic anodes for lithium ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(4): doi: 10.1149/1945-7111/ab78fb. |
85 | LIU Z, BI Z, SHANG Y, et al. Visualization of electrochemical cycling-induced dimension change in LiMn2O4 nanoparticles by high-speed atomic force microscopy[J]. Langmuir, 2020, 36(17): 4689-4694. |
86 | ZHANG W, SEO D H, CHEN T, et al. Kinetic pathways of ionic transport in fast-charging lithium titanate[J]. Science, 2020, 367(6481): 1030-1034. |
87 | BURKHARDT S, FRIEDRICH M S, ECKHARDT J K, et al. Charge transport in single NCM cathode active material particles for lithium-ion batteries studied under well-defined contact conditions[J]. ACS Energy Letters, 2019, 4(9): 2117-2123. |
88 | SHIN S, RAJENDRA T, NELSON G J. Mesoscale transport-geometry interactions in lithium ion cathode active materials: Particle scale galvanostatic simulations based on X-ray nanotomography data[J]. Journal of Power Sources, 2020, 454: doi: 10.1016/j.jpowsour.2020.227891. |
89 | LU X, BERTEI A, FINEGAN D P, et al. 3d microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-15811-x. |
90 | ARIYOSHI K, EGUCHI M, HIROOKA M. Examining the long-term cyclabilities of Li Ni1/2Mn3/2O4 and Li[Li0.1Al0.1Mn1.8]O4 using a full-cell configuration including LTO-counter electrodes with extra capacity[J]. Journal of the Electrochemical Society, 2020, 167(6): doi: 10.1149/1945-7111/ab872f. |
91 | NI X, HE Y, WANG H. Expanding the metrology of coulombic efficiency using neutron depth profiling[J]. Radiation Effects and Defects in Solids, 2020, 175(3/4): 356-366. |
92 | DIEKMANN J, DOOSE S, WEBER S, et al. Development of a new procedure for nail penetration of lithium-ion cells to obtain meaningful and reproducible results[J]. Journal of the Electrochemical Society, 2020, 167(9): doi: 10.1149/1945-7111/ab78ff. |
93 | FORESTIER C, LECOCQ A, ZANTMAN A, et al. Study of the role of LiNi1/3Mn1/3Co1/3O2/graphite Li-ion pouch cells confinement, electrolyte composition and separator coating on thermal runaway and off-gas toxicity[J]. Journal of the Electrochemical Society, 2020, 167(9): doi: 10.1149/1945-7111/ab829e. |
94 | KONDO H, BABA N, MAKIMURA Y, et al. Model validation and simulation study on the thermal abuse behavior of LNi0.8Co0.15Al0.05O2-based batteries[J]. Journal of Power Sources, 2020, 448: doi: 10.1016/j.jpowsour.2019.227464. |
95 | PATEL D, ROBINSON J B, BALL S, et al. Thermal runaway of a Li-ion battery studied by combined ARC and multi-length scale X-ray CT[J]. Journal of the Electrochemical Society, 2020, 167(9): doi: 10.1149/1945-7111/ab7fb6. |
96 | LANG M, DARMA M S D, MEREACRE L, et al. Post mortem analysis of ageing mechanisms in LiNi0.8Co0.15Al0.05O2-LiNi0.5Co0.2Mn0.3O2- LiMn2O4/graphite lithium ion batteries[J]. Journal of Power Sources, 2020, 453: doi: 10.1016/j.jpowsour.2020.227915. |
97 |
GIMENEZ C S, HELMERS L, SCHILDE C, et al. Modeling the electrical conductive paths within all-solid-state battery electrodes[J]. Chemical Engineering & Technology, 2020, doi: 10.1002/ceat.201900501.
doi: 10.1002/ceat.201900501 |
98 | SMITH J G, SIEGEL D J. Low-temperature paddlewheel effect in glassy solid electrolytes[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-15245-5. |
99 | BONAKALA S, PATHAK A D, DEYKO A, et al. First-principles characterization and experimental validation of the solid-solid interface in a novel organosulfur cathode for the Li-S battery[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 18101-18109. |
100 | XU N, LI L, HE Y, et al. Understanding the molecular mechanism of lithium deposition for practical high-energy lithium-metal batteries[J]. Journal of Materials Chemistry A, 2020, 8(13): 6229-6237. |
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 陈志城, 李宗旭, 蔡玲, 刘易斯. 柔性金属空气电池的发展现状及未来展望[J]. 储能科学与技术, 2022, 11(5): 1401-1410. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||