储能科学与技术 ›› 2022, Vol. 11 ›› Issue (2): 409-433.doi: 10.19799/j.cnki.2095-4239.2021.0652
王达1(), 周航1, 焦遥1, 王佳民1, 施维1, 蒲博伟1, 李铭清1, 宁芳华3, 任元1, 喻嘉2, 李亚捷1, 李彪4, 施思齐1,2,5()
收稿日期:
2021-12-07
修回日期:
2022-01-06
出版日期:
2022-02-05
发布日期:
2022-02-08
通讯作者:
施思齐
E-mail:dwd0826@shu.edu.cn;sqshi@shu.edu.cn
作者简介:
王达(1987—),男,博士,从事电化学能量存储与转换材料的第一性原理计算与设计研究,E-mail:基金资助:
Da WANG1(), Hang ZHOU1, Yao JIAO1, Jiamin WANG1, Wei SHI1, Bowei PU1, Mingqing LI1, Fanghua NING3, Yuan REN1, Jia YU2, Yajie LI1, Biao LI4, Siqi SHI1,2,5()
Received:
2021-12-07
Revised:
2022-01-06
Online:
2022-02-05
Published:
2022-02-08
Contact:
Siqi SHI
E-mail:dwd0826@shu.edu.cn;sqshi@shu.edu.cn
摘要:
配位场理论融合了晶体场的静电作用和分子轨道的共价作用于1952年首次被提出,是解析热力学、地质矿物学和电化学系统中的结构畸变、热力学性质和磁性等物理/化学问题的基础。其中对于近年来快速发展的单价/多价金属离子电池领域,其电极材料通常是含有d电子的过渡金属化合物,目前仍普遍存在对具有不同配位场过渡金属电极材料中离子脱嵌电压、比容量以及相结构稳定等微观结构/电荷转移性能调控机理认识的不足。本文从配位场理论方法出发并结合可直接计算电子分布及占据特性的第一性原理计算方法,对离子脱嵌电化学过程中决定电压的费米能级计算模型、衡量相结构稳定性的晶体场稳定化能计算公式、调控阴离子氧化还原活性的理论模型等进行了严格的推导。在此基础上,提出针对刚性带体系的电压调控和含不同周期过渡金属材料相结构稳定性预测等一系列电极能量密度/相稳定性改进策略,并成功设计出无过渡金属Li(Na)BCF2/Li(Na)B2C2F2正极及嵌入式反应无锂MX2正极两种新型电极材料。本工作拓展了配位场理论在离子嵌入电化学中的应用,为从电子的能带调控角度设计高能量密度嵌入式电极材料提供了新思路。
中图分类号:
王达, 周航, 焦遥, 王佳民, 施维, 蒲博伟, 李铭清, 宁芳华, 任元, 喻嘉, 李亚捷, 李彪, 施思齐. 离子嵌入电化学反应机理的理解及性能预测:从晶体场理论到配位场理论[J]. 储能科学与技术, 2022, 11(2): 409-433.
Da WANG, Hang ZHOU, Yao JIAO, Jiamin WANG, Wei SHI, Bowei PU, Mingqing LI, Fanghua NING, Yuan REN, Jia YU, Yajie LI, Biao LI, Siqi SHI. Understanding and performance prediction of ions-intercalation electrochemistry: From crystal field theory to ligand field theory[J]. Energy Storage Science and Technology, 2022, 11(2): 409-433.
1 | ABAKUMOV A M, FEDOTOV S S, ANTIPOV E V, et al. Solid state chemistry for developing better metal-ion batteries[J]. Nature Communications, 2020, 11: 4976. |
2 | WHITTINGHAM M S. Electrical energy storage and intercalation chemistry[J]. Science, 1976, 192(4244): 1126-1127. |
3 | STOYANOVA R, KOLEVA V, STOYANOVA A. Lithium versus mono/polyvalent ion intercalation: hybrid metal ion systems for energy storage[J]. Chemical Record, 2019, 19(2/3): 474-501. |
4 | WU F, YANG H Y, BAI Y, et al. Paving the path toward reliable cathode materials for aluminum-ion batteries[J]. Advanced Materials, 2019, 31(16): 1806510. |
5 | GOODENOUGH J B. Rechargeable batteries: Challenges old and new[J]. Journal of Solid State Electrochemistry, 2012, 16(6): 2019-2029. |
6 | TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. |
7 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
8 | NITTA N, WU F X, LEE J T, et al. Li-ion battery materials: Present and future[J]. Materials Today, 2015, 18(5): 252-264. |
9 | WINTER M, BARNETT B, XU K. Before Li ion batteries[J]. Chemical Reviews, 2018, 118(23): 11433-11456. |
10 | MAUGER A, JULIEN C M, GOODENOUGH J B, et al. Tribute to Michel Armand: From rocking chair-Li-ion to solid-state lithium batteries[J]. Journal of the Electrochemical Society, 2020, 167(7): 070507. |
11 | GUO Z Q, ZHAO S Q, LI T X, et al. Recent advances in rechargeable magnesium-based batteries for high-efficiency energy storage[J]. Advanced Energy Materials, 2020, 10(21): 1903591. |
12 | LIANG Y L, DONG H, AURBACH D, et al. Current status and future directions of multivalent metal-ion batteries[J]. Nature Energy, 2020, 5(9): 646-656. |
13 | CUI L M, ZHOU L M, KANG Y M, et al. Recent advances in the rational design and synthesis of two-dimensional materials for multivalent ion batteries[J]. ChemSusChem, 2020, 13(6): 1071-1092. |
14 | GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176. |
15 | LI B, XIA D G. Anionic redox in rechargeable lithium batteries[J]. Advanced Materials, 2017, 29(48): 1701054. |
16 | WEI Y, ZHENG J X, CUI S H, et al. Kinetics tuning of Li-ion diffusion in layered Li(NixMnyCoz)O2[J]. Journal of the American Chemical Society, 2015, 137(26): 8364-8367. |
17 | DYER M S, COLLINS C, HODGEMAN D, et al. Computationally assisted identification of functional inorganic materials[J]. Science, 2013, 340(6134): 847-852. |
18 | KALANTAR-ZADEH K, OU J Z, DAENEKE T, et al. Two-dimensional transition metal dichalcogenides in biosystems[J]. Advanced Functional Materials, 2015, 25(32): 5086-5099. |
19 | MAXISCH T, ZHOU F, CEDER G. Ab initio study of the migration of small polarons in olivine LixFePO4 and their association with lithium ions and vacancies[J]. Physical Review B, 2006, 73(10): 104301. |
20 | ZHENG J X, TENG G F, YANG J L, et al. Mechanism of exact transition between cationic and anionic redox activities in cathode material Li2FeSiO4[J]. The Journal of Physical Chemistry Letters, 2018, 9(21): 6262-6268. |
21 | ZHENG J X, YE Y K, PAN F. 'Structure units' as material genes in cathode materials for lithium-ion batteries[J]. National Science Review, 2019, 7(2): 242-245. |
22 | GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. |
23 | CHERKASHININ G, HAUSBRAND R, JAEGERMANN W. Performance of Li-ion batteries: Contribution of electronic factors to the battery voltage[J]. Journal of the Electrochemical Society, 2019, 166(3): A5308-A5312. |
24 | BETHE H. Termaufspaltung in kristallen[J]. Annalen Der Physik, 1929, 395(2): 133-208. |
25 | VAN VLECK J H. Valence strength and the magnetism of complex salts[J]. The Journal of Chemical Physics, 1935, 3(12): 807-813. |
26 | GRIFFITH J S, ORGEL L E. Ligand-field theory[J]. Quarterly Reviews, Chemical Society, 1957, 11(4): 381. |
27 | BALLHAUSEN C. Crystal and ligand field theory[J]. International Journal of Quantum Chemistry, 1971, 5(S5): 373-377. |
28 | LIU J X, WANG J Q, NI Y X, et al. Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries[J]. Materials Today, 2021, 43: 132-165. |
29 | VAN DER VEN A, BHATTACHARYA J, BELAK A A. Understanding Li diffusion in Li-intercalation compounds[J]. Accounts of Chemical Research, 2013, 46(5): 1216-1225. |
30 | VAN DER VEN A, DENG Z, BANERJEE S, et al. Rechargeable alkali-ion battery materials: Theory and computation[J]. Chemical Reviews, 2020, 120(14): 6977-7019. |
31 | SHI S Q, GAO J, LIU Y, et al. Multi-scale computation methods: Their applications in lithium-ion battery research and development[J]. Chinese Physics B, 2016, 25(1): 018212. |
32 | PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. |
33 | SUN J W, RUZSINSZKY A, PERDEW J P. Strongly constrained and appropriately normed semilocal density functional[J]. Physical Review Letters, 2015, 115(3): 036402. |
34 | LEJAEGHERE K, BIHLMAYER G, BJÖRKMAN T, et al. Reproducibility in density functional theory calculations of solids[J]. Science, 2016, 351(6280): aad3000. |
35 | SUGANO S. Recent progress of crystal field theory[J]. Journal of Applied Physics, 1962, 33(1): 303-306. |
36 | EREMIN M V, KORNIENKO A A. The superposition model in crystal field theory[J]. Physica Status Solidi (b), 1977, 79(2): 775-785. |
37 | DELANGE P, BIERMANN S, MIYAKE T, et al. Crystal-field splittings in rare-earth-based hard magnets: An ab initio approach[J]. Physical Review B, 2017, 96(15): 155132. |
38 | KRISHNAMURTHY R, SCHAAP W B. Computing ligand field potentials and relative energies of d orbitals: Theory[J]. Journal of Chemical Education, 1970, 47(6): 433-446. |
39 | MCCLURE D S. Optical spectra of transition-metal ions in corundum[J]. The Journal of Chemical Physics, 1962, 36(10): 2757-2779. |
40 | PIPER T S, CARLIN R L. Axial crystal fields in the ionic model[J]. The Journal of Chemical Physics, 1960, 33(4): 1208-1211. |
41 | PERUMAREDDI J R. Electronic spectra of quadrate chromium(Ⅲ) complexes[J]. Coordination Chemistry Reviews, 1969, 4(1): 73-105. |
42 | KRISHNAMURTHY R, SCHAAP W B. Computing ligand field potentials and relative energies of d orbitals: A simple general approach[J]. Journal of Chemical Education, 1969, 46(12): 799-810. |
43 | MANTHIRAM A. An outlook on lithium ion battery technology[J]. ACS Central Science, 2017, 3(10): 1063-1069. |
44 | LIU Y Y, MERINOV B V, GODDARD W A 3rd. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(14): 3735-3739. |
45 | JIANG J, OUYANG C Y, LI H, et al. First-principles study on electronic structure of LiFePO4[J]. Solid State Communications, 2007, 143(3): 144-148. |
46 | CASTRO L, DEDRYVÈRE R, EL KHALIFI M, et al. The spin-polarized electronic structure of LiFePO4 and FePO4 evidenced by in-lab XPS[J]. The Journal of Physical Chemistry C, 2010, 114(41): 17995-18000. |
47 | LÜ X J, XU Z M, LI J, et al. Insights into stability, electronic properties, defect properties and Li ions migration of Na, Mg and Al-doped LiVPO4F for cathode materials of lithium ion batteries: A first-principles investigation[J]. Journal of Solid State Chemistry, 2016, 239: 228-236. |
48 | ASSAT G, TARASCON J M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries[J]. Nature Energy, 2018, 3(5): 373-386. |
49 | MELOT B C, TARASCON J M. Design and preparation of materials for advanced electrochemical storage[J]. Accounts of Chemical Research, 2013, 46(5): 1226-1238. |
50 | CHEN K F, XUE D F. Materials chemistry toward electrochemical energy storage[J]. Journal of Materials Chemistry A, 2016, 4(20): 7522-7537. |
51 | LI K Y, XUE D F. Estimation of electronegativity values of elements in different valence states[J]. The Journal of Physical Chemistry A, 2006, 110(39): 11332-11337. |
52 | ZHOU F, COCOCCIONI M, KANG K, et al. The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M=Fe, Mn, Co, Ni[J]. Electrochemistry Communications, 2004, 6(11): 1144-1148. |
53 | MURALIGANTH T, MANTHIRAM A. Understanding the shifts in the redox potentials of olivine LiM1-yMyPO4(M=Fe, Mn, Co, and Mg) solid solution cathodes[J]. The Journal of Physical Chemistry C, 2010, 114(36): 15530-15540. |
54 | LIU C F, NEALE Z G, CAO G Z. Understanding electrochemical potentials of cathode materials in rechargeable batteries[J]. Materials Today, 2016, 19(2): 109-123. |
55 | CHOI D, WANG D H, BAE I T, et al. LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode[J]. Nano Letters, 2010, 10(8): 2799-2805. |
56 | LU Z G, CHEN H L, ROBERT R, et al. Citric acid- and ammonium-mediated morphological transformations of olivine LiFePO4 particles[J]. Chemistry of Materials, 2011, 23(11): 2848-2859. |
57 | MANTHIRAM A, GOODENOUGH J B. Lithium insertion into Fe2(SO4)3 frameworks[J]. Journal of Power Sources, 1989, 26(3/4): 403-408. |
58 | HAUTIER G, JAIN A, ONG S P, et al. Phosphates as lithium-ion battery cathodes: An evaluation based on high-throughput ab initio calculations[J]. Chemistry of Materials, 2011, 23(15): 3495-3508. |
59 | MANTHIRAM A. A reflection on lithium-ion battery cathode chemistry[J]. Nature Communications, 2020, 11: 1550. |
60 | PADHI A K, NANJUNDASWAMY K S, MASQUELIER C, et al. Mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation[J]. Journal of the Electrochemical Society, 1997, 144(8): 2581-2586. |
61 | CHOI N S, CHEN Z H, FREUNBERGER S A, et al. Challenges facing lithium batteries and electrical double-layer capacitors[J]. Angewandte Chemie International Edition, 2012, 51(40): 9994-10024. |
62 | LIU Y Y, WANG Y M, YAKOBSON B I, et al. Assessing carbon-based anodes for lithium-ion batteries: A universal description of charge-transfer binding[J]. Physical Review Letters, 2014, 113(2): 028304. |
63 | WANG Z Q, WANG D, ZOU Z Y, et al. Efficient potential-tuning strategy through p-type doping for designing cathodes with ultrahigh energy density[J]. National Science Review, 2020, 7(11): 1768-1775. |
64 | WANG D, SHI S. Designing ultrahigh energy-density Li-free cathodes for rechargeable batteries[J]. Unpublished. |
65 | URBAN A, SEO D H, CEDER G. Computational understanding of Li-ion batteries[J]. npj Computational Materials, 2016, 2: 16002. |
66 | LIANG Y L, ZHANG P, YANG S Q, et al. Fused heteroaromatic organic compounds for high-power electrodes of rechargeable lithium batteries[J]. Advanced Energy Materials, 2013, 3(5): 600-605. |
67 | MIAO L C, LIU L J, SHANG Z F, et al. The structure-electrochemical property relationship of quinone electrodes for lithium-ion batteries[J]. Physical Chemistry Chemical Physics, 2018, 20(19): 13478-13484. |
68 | KIM K C, LIU T Y, LEE S W, et al. First-principles density functional theory modeling of Li binding: Thermodynamics and redox properties of quinone derivatives for lithium-ion batteries[J]. Journal of the American Chemical Society, 2016, 138(7): 2374-2382. |
69 | HAN Y-K, JUNG J, YU S, et al. Understanding the characteristics of high-voltage additives in Li-ion batteries: Solvent effects[J]. Journal of Power Sources, 2009, 187(2): 581-585. |
70 | KIM S C, KONG X, VILÁ R A, et al. Potentiometric measurement to probe solvation energy and its correlation to lithium battery cyclability[J]. Journal of the American Chemical Society, 2021, 143(27): 10301-10308. |
71 | PASQUIER D, YAZYEV O V. Crystal field, ligand field, and interorbital effects in two-dimensional transition metal dichalcogenides across the periodic table[J]. 2D Materials, 2019, 6(2): 025015. |
72 | ZHAO Y, LI Y, LIU M, et al. Strain-controllable phase and magnetism transitions in Re-Doped MoTe2 monolayer[J]. The Journal of Physical Chemistry C, 2020, 124(7): 4299-4307. |
73 | CHOI S, MANTHIRAM A. Factors influencing the layered to spinel-like phase transition in layered oxide cathodes[J]. Journal of the Electrochemical Society, 2002, 149(9): A1157-A1163. |
74 | ZHOU X Y, SHU H B, LI Q Q, et al. Electron-injection driven phase transition in two-dimensional transition metal dichalcogenides[J]. Journal of Materials Chemistry C, 2020, 8(13): 4432-4440. |
75 | WANG X F, SHEN X, WANG Z X, et al. Atomic-scale clarification of structural transition of MoS2 upon sodium intercalation[J]. ACS Nano, 2014, 8(11): 11394-11400. |
76 | SHU H B, LI F, HU C L, et al. The capacity fading mechanism and improvement of cycling stability in MoS2-based anode materials for lithium-ion batteries[J]. Nanoscale, 2016, 8(5): 2918-2926. |
77 | WU N Z, ZHOU X L, KIDKHUNTHOD P, et al. K-ion battery cathode design utilizing trigonal prismatic ligand field[J]. Advanced Materials, 2021, 33(24): e2101788. |
78 | HURSTHOUSE M B, LIGHT M E, PRICE D J. One-dimensional magnetism in anhydrous iron and cobalt ternary oxalates with rare trigonal-prismatic metal coordination environment[J]. Angewandte Chemie International Edition, 2004, 43(4): 472-475. |
79 | CREMADES E, ECHEVERRÍA J, ALVAREZ S. The trigonal prism in coordination chemistry[J]. Chemistry-A European Journal, 2010, 16(34): 10380-10396. |
80 | SYONO Y, TOKONAMI M, MATSUI Y. Crystal field effect on the olivine-spinel transformation[J]. Physics of the Earth and Planetary Interiors, 1971, 4(5): 347-352. |
81 | ORGEL L. The effects of crystal fields on the properties of transition-metal ions[J]. Journal of the Chemical Society, 1952: 4756-4761. |
82 | AKIMOTO S I. The system MgO-FeO-SiO2 at high pressures and temperatures-phase equilibria and elastic properties[J]. Tectonophysics, 1972, 13(1/2/3/4): 161-187. |
83 | LANGER K, KHOMENKO V M. The influence of crystal field stabilization energy on Fe2+ partitioning in paragenetic minerals[J]. Contributions to Mineralogy and Petrology, 1999, 137(3): 220-231. |
84 | KIM H, PARK C S, CHOI J W, et al. Tuning the phase stability of sodium metal pyrophosphates for synthesis of high voltage cathode materials[J]. Chemistry of Materials, 2016, 28(18): 6724-6730. |
85 | AMTHAUER G. Ligand field theory and inter- and intracrystalline cation distribution of transition elements in minerals and related inorganic compounds[J]. Physics and Chemistry of Minerals, 1996, 23(4/5): 276-283. |
86 | OHNISHI S, MIZUTANI H. Crystal field effect on bulk moduli of transition metal oxides[J]. Journal of Geophysical Research: Solid Earth, 1978, 83(B4): 1852-1856. |
87 | BURNS R G. Crystal field spectra and evidence of cation ordering in olivine minerals[J]. American Mineralogist: Journal of Earth and Planetary Materials, 1970, 55(9-10): 1608-1632. |
88 | BURNS R G. On the occurrence and stability of divalent chromium in olivines included in diamonds[J]. Contributions to Mineralogy and Petrology, 1975, 51(3): 213-221. |
89 | TUDELA D. A common inorganic chemistry textbook mistake: Incorrect use of pairing energy in crystal field stabilization energy expressions[J]. Journal of Chemical Education, 1999, 76(1): 134-135. |
90 | BURNS R G, BURNS R G. Mineralogical applications of crystal field theory[M]. Cambridge: Cambridge University Press, 1993. |
91 | SHI J S, WU Z J, ZHOU S H, et al. Dependence of crystal field splitting of 5d levels on hosts in the halide crystals[J]. Chemical Physics Letters, 2003, 380(3/4): 245-250. |
92 | JØRGENSEN C K. Absorption spectra and chemical bonding in complexes[M]. Elsevier, 1962: 210-243. |
93 | OHZUKU T, NAGAYAMA M, TSUJI K, et al. High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: Toward rechargeable capacity more than 300 mA·h·g-1[J]. Journal of Materials Chemistry, 2011, 21(27): 10179-10188. |
94 | KOGA H, CROGUENNEC L, MÉNÉTRIER M, et al. Reversible oxygen participation to the redox processes revealed for Li1.20Mn0.54Co0.13Ni0.13O2[J]. Journal of the Electrochemical Society, 2013, 160(6): A786-A792. |
95 | MAITRA U, HOUSE R A, SOMERVILLE J W, et al. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2[J]. Nature Chemistry, 2018, 10(3): 288-295. |
96 | SEO D-H, LEE J, URBAN A, et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials[J]. Nature Chemistry, 2016, 8(7): 692-697. |
97 | LEE J, PAPP J K, CLÉMENT R J, et al. Mitigating oxygen loss to improve the cycling performance of high capacity cation-disordered cathode materials[J]. Nature Communications, 2017, 8: 981. |
98 | COX P A. Transition metal oxides: An introduction to their electronic structure and properties[M]. Oxford University Press, 2010. |
99 | HUHEEY J E, KEITER E A, KEITER R L, et al. Inorganic chemistry: Principles of structure and reactivity[M]. Pearson Education India, 2006. |
100 | AYDINOL M K, KOHAN A F, CEDER G, et al. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides[J]. Physical Review B, 1997, 56(3): 1354-1365. |
101 | NANBA Y, IWAO T, DE BOISSE B M, et al. Redox potential paradox in NaxMo2 for sodium-ion battery cathodes[J]. Chemistry of Materials, 2016, 28(4): 1058-1065. |
102 | TARASCON J M, VAUGHAN G, CHABRE Y, et al. In situ structural and electrochemical study of Ni1-xCoxO2 metastable oxides prepared by soft chemistry[J]. Journal of Solid State Chemistry, 1999, 147(1): 410-420. |
103 | BEN YAHIA M, VERGNET J, SAUBANÈRE M, et al. Unified picture of anionic redox in Li/Na-ion batteries[J]. Nature Materials, 2019, 18(5): 496-502. |
104 | HUGHBANKS T, HOFFMANN R. Chains of trans-edge-sharing molybdenum octahedra: Metal-metal bonding in extended systems[J]. Journal of the American Chemical Society, 1983, 105(11): 3528-3537. |
105 | ROZIER P, TARASCON J M. Li-rich layered oxide cathodes for next-generation Li-ion batteries: Chances and challenges[J]. Journal of the Electrochemical Society, 2015, 162(14): A2490-A2499. |
106 | OKUBO M, YAMADA A. Molecular orbital principles of oxygen-redox battery electrodes[J]. ACS Applied Materials & Interfaces, 2017, 9(42): 36463-36472. |
107 | SONG J H, YOON G, KIM B, et al. Anionic redox activity regulated by transition metal in lithium-rich layered oxides[J]. Advanced Energy Materials, 2020, 10(31): 2001207. |
108 | LIU S, LIU Z P, SHEN X, et al. Li-Ti cation mixing enhanced structural and performance stability of Li-rich layered oxide[J]. Advanced Energy Materials, 2019, 9(32): 1901530. |
109 | YU D Y W, YANAGIDA K, KATO Y, et al. Electrochemical activities in Li2MnO3[J]. Journal of the Electrochemical Society, 2009, 156(6): A417-A424. |
110 | XU J, SUN M L, QIAO R M, et al. Elucidating anionic oxygen activity in lithium-rich layered oxides[J]. Nature Communications, 2018, 9: 947. |
111 | BALLHAUSEN C J. Introduction to ligand field theory[M]. New York : McGraw, 1962. |
112 | CEDER G, AYDINOL M K, KOHAN A F. Application of first-principles calculations to the design of rechargeable Li-batteries[J]. Computational Materials Science, 1997, 8(1/2): 161-169. |
113 | ZHOU F, COCOCCIONI M, MARIANETTI C A, et al. First-principles prediction of redox potentials in transition-metal compounds with LDA+U[J]. Physical Review B, 2004, 70(23): 235121. |
114 | PRALONG V, GOPAL V, CAIGNAERT V, et al. Lithium-rich rock-salt-type vanadate as energy storage cathode: Li2-xVO3[J]. Chemistry of Materials, 2012, 24(1): 12-14. |
115 | STOYANOVA R, ZHECHEVA E, ALCÁNTARA R, et al. Lithium/nickel mixing in the transition metal layers of lithium nickelate: High-pressure synthesis of layered Li[LixNi1-x]O2 oxides as cathode materials for lithium-ion batteries[J]. Solid State Ionics, 2003, 161(3/4): 197-204. |
116 | ZHANG K, JIANG Z W, NING F H, et al. Metal-ligand π interactions in lithium-rich Li2RhO3 cathode material activate bimodal anionic redox[J]. Advanced Energy Materials, 2021, 11(30): 2100892. |
117 | SILVÁN B, GONZALO E, DJUANDHI L, et al. On the dynamics of transition metal migration and its impact on the performance of layered oxides for sodium-ion batteries: NaFeO2 as a case study[J]. Journal of Materials Chemistry A, 2018, 6(31): 15132-15146. |
118 | HU E Y, YU X Q, LIN R Q, et al. Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release[J]. Nature Energy, 2018, 3(8): 690-698. |
119 | SHADIKE Z, ZHOU Y-N, CHEN L-L, et al. Antisite occupation induced single anionic redox chemistry and structural stabilization of layered sodium chromium sulfide[J]. Nature Communications, 2017, 8: 566. |
120 | GAO A, SUN Y, ZHANG Q H, et al. Evolution of Ni/Li antisites under the phase transition of a layered LiNi1/3Co1/3Mn1/3O2 cathode[J]. Journal of Materials Chemistry A, 2020, 8(13): 6337-6348. |
121 | LIN Q Y, GUAN W H, ZHOU J B, et al. Ni-Li anti-site defect induced intragranular cracking in Ni-rich layer-structured cathode[J]. Nano Energy, 2020, 76: 105021. |
122 | OHZUKU T, UEDA A, NAGAYAMA M. Electrochemistry and structural chemistry of LiNiO2(R3m) for 4 Volt secondary lithium cells[J]. Journal of the Electrochemical Society, 1993, 140(7): 1862-1870. |
123 | KANNO R, KUBO H, KAWAMOTO Y, et al. Phase relationship and lithium deintercalation in lithium nickel oxides[J]. Journal of Solid State Chemistry, 1994, 110(2): 216-225. |
124 | NEUDECKER B J, ZUHR R A, ROBERTSON J D, et al. Lithium manganese nickel oxides Lix(MnyNi1-y)2-xO2: (Ⅱ): Electrochemical studies on thin-film batteries[J]. Journal of the Electrochemical Society, 1998, 145(12): 4160-4168. |
125 | ARORA P, WHITE R E, DOYLE M. Capacity fade mechanisms and side reactions in lithium-ion batteries[J]. Journal of the Electrochemical Society, 1998, 145(10): 3647-3667. |
126 | TAKAHASHI I, FUKUDA K, KAWAGUCHI T, et al. Quantitative analysis of transition-metal migration induced electrochemically in lithium-rich layered oxide cathode and its contribution to properties at high and low temperatures[J]. The Journal of Physical Chemistry C, 2016, 120(48): 27109-27116. |
127 | XU B, FELL C R, CHI M F, et al. Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study[J]. Energy & Environmental Science, 2011, 4(6): 2223-2233. |
128 | QIAN D N, XU B, CHI M F, et al. Uncovering the roles of oxygen vacancies in cation migration in lithium excess layered oxides[J]. Physical Chemistry Chemical Physics, 2014, 16(28): 14665-14668. |
129 | ZHENG F, ZHENG S Y, ZHANG P, et al. Impact of structural transformation on electrochemical performances of Li-rich cathode materials: The case of Li2RuO3[J]. The Journal of Physical Chemistry C, 2019, 123(22): 13491-13499. |
130 | YAN P F, ZHENG J M, ZHANG J G, et al. Atomic resolution structural and chemical imaging revealing the sequential migration of Ni, Co, and Mn upon the battery cycling of layered cathode[J]. Nano Letters, 2017, 17(6): 3946-3951. |
131 | CHEN D C, KAN W H, CHEN G Y. Understanding performance degradation in cation-disordered rock-salt oxide cathodes[J]. Advanced Energy Materials, 2019, 9(31): 1901255. |
132 | YABUUCHI N, YOSHII K, MYUNG S T, et al. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2[J]. Journal of the American Chemical Society, 2011, 133(12): 4404-4419. |
133 | ITO A, SHODA K, SATO Y, et al. Direct observation of the partial formation of a framework structure for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2 upon the first charge and discharge[J]. Journal of Power Sources, 2011, 196(10): 4785-4790. |
134 | CHEN C, DING Z P, HAN Z, et al. Unraveling atomically irreversible cation migration in sodium layered oxide cathodes[J]. The Journal of Physical Chemistry Letters, 2020, 11(14): 5464-5470. |
135 | KUBOTA K, IKEUCHI I, NAKAYAMA T, et al. New insight into structural evolution in layered NaCrO2 during electrochemical sodium extraction[J]. The Journal of Physical Chemistry C, 2015, 119(1): 166-175. |
136 | SUN Z H, XU L Q, DONG C Q, et al. Enhanced cycling stability of boron-doped lithium-rich layered oxide cathode materials by suppressing transition metal migration[J]. Journal of Materials Chemistry A, 2019, 7(7): 3375-3383. |
137 | XU S Y, WU J P, HU E Y, et al. Suppressing the voltage decay of low-cost P2-type iron-based cathode materials for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(42): 20795-20803. |
138 | EUM D, KIM B, KIM S J, et al. Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes[J]. Nature Materials, 2020, 19(4): 419-427. |
139 | NING F H, XU B, SHI J, et al. Ab initio investigation of Jahn-Teller-distortion-tuned Li-ion migration in λ-MnO2[J]. Journal of Materials Chemistry A, 2017, 5(20): 9618-9626. |
140 | SAINT J A, DOEFF M M, REED J. Synthesis and electrochemistry of Li3MnO4: Mn in the +5 oxidation state[J]. Journal of Power Sources, 2007, 172(1): 189-197. |
141 | REED J, CEDER G. Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation[J]. Chemical Reviews, 2004, 104(10): 4513-4534. |
142 | RAJAGOPALAN R, CHEN B, ZHANG Z, et al. Improved reversibility of Fe3+/Fe4+ redox couple in sodium super ion conductor type Na3Fe2(PO4)3 for sodium-ion batteries[J]. Advanced Materials, 2017, 29(12): 1605694. |
[1] | 张群斌, 董陶, 李晶晶, 刘艳侠, 张海涛. 废旧电池电解液回收及高值化利用研发进展[J]. 储能科学与技术, 2022, (): 1-14. |
[2] | 王鲁, 王峰, 徐竞, 赵延鹏, 李玮, 王艳艳, 王应彪. 基于SOM+SVM的退役锂离子电池分选[J]. 储能科学与技术, 2022, (): 1-9. |
[3] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[4] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[5] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[6] | 何凤荣, 张啟文, 郭德超, 郭义敏, 郭孝东. 电极结构对(NCM+AC)/HC混合型电容器电性能的影响[J]. 储能科学与技术, 2022, 11(7): 2051-2058. |
[7] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[8] | 王宇作, 卢颖莉, 邓苗, 杨斌, 于学文, 荆葛, 阮殿波. 超级电容器自放电的研究进展[J]. 储能科学与技术, 2022, 11(7): 2114-2125. |
[9] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[10] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[11] | 鲁志颖, 江杉, 李全龙, 马可心, 傅腾, 郑志刚, 刘志成, 李淼, 梁永胜, 董知非. 全钒液流电池在充电结束搁置阶段的开路电压变化[J]. 储能科学与技术, 2022, 11(7): 2046-2050. |
[12] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[13] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[14] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[15] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||