1 |
卢婷, 杨文强. 锂离子电池全生命周期内评估参数及评估方法综述[J]. 储能科学与技术, 2020, 9(3): 657-669.
|
|
LU T, YANG W Q. Review of evaluation parameters and methods of lithium batteries throughout its life cycle[J]. Energy Storage Science and Technology, 2020, 9(3): 657-669.
|
2 |
张照娓, 郭天滋, 高明裕, 等. 电动汽车锂离子电池荷电状态估算方法研究综述[J]. 电子与信息学报, 2021, 43(7): 1803-1815.
|
|
ZHANG Z W, GUO T Z, GAO M Y, et al. Review of SoC estimation methods for electric vehicle Li-ion batteries[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1803-1815.
|
3 |
孔祥创, 赵万忠, 王春燕. 基于BP-EKF算法的锂电池SOC联合估计[J]. 汽车工程, 2017, 39(6): 648-652.
|
|
KONG X C, ZHAO W Z, WANG C Y. Co-estimation of lithium battery SOC based on BP-EKF algorithm[J]. Automotive Engineering, 2017, 39(6): 648-652.
|
4 |
黎冲, 王成辉, 王高, 等. 锂电池SOC估计的实现方法分析与性能对比[J]. 储能科学与技术, 2022, 11(10): 3328-3344.
|
|
LI C, WANG C H, WANG G, et al. Review on implementation method analysis and performance comparison of lithium battery state of charge estimation[J]. Energy Storage Science and Technology, 2022, 11(10): 3328-3344.
|
5 |
王萍, 彭香园, 程泽, 等. 基于数据驱动模型融合的锂离子电池多时间尺度状态联合估计方法[J]. 汽车工程, 2022, 44(3): 362-371, 378.
|
|
WANG P, PENG X Y, CHENG Z, et al. A multi-time scale joint state estimation method for lithium-ion batteries based on data-driven model fusion[J]. Automotive Engineering, 2022, 44(3): 362-371, 378.
|
6 |
ZHANG X Q, ZHANG W P, LEI G Y. A review of Li-ion battery equivalent circuit models[J]. Transactions on Electrical and Electronic Materials, 2016, 17(6): 311-316.
|
7 |
王晓兰, 靳皓晴, 刘祥远. 基于融合模型的锂离子电池荷电状态在线估计[J]. 工程科学学报, 2020, 42(9): 1200-1208.
|
|
WANG X L, JIN H Q, LIU X Y. Online estimation of the state of charge of a lithium-ion battery based on the fusion model[J]. Chinese Journal of Engineering, 2020, 42(9): 1200-1208.
|
8 |
ADAIKKAPPAN M, SATHIYAMOORTHY N. Modeling, state of charge estimation, and charging of lithium-ion battery in electric vehicle: A review[J]. International Journal of Energy Research, 2022, 46(3): 2141-2165.
|
9 |
CUI Z H, WANG L C, LI Q, et al. A comprehensive review on the state of charge estimation for lithium-ion battery based on neural network[J]. International Journal of Energy Research, 2022, 46(5): 5423-5440.
|
10 |
苏振浩, 李晓杰, 秦晋, 等. 基于BP人工神经网络的动力电池SOC估算方法[J]. 储能科学与技术, 2019, 8(5): 868-873.
|
|
SU Z H, LI X J, QIN J, et al. SOC estimation method of power battery based on BP artificial neural network[J]. Energy Storage Science and Technology, 2019, 8(5): 868-873.
|
11 |
张立佳, 徐国宁, 赵向阳, 等. 基于神经网络的老化锂电池SOC估算方法的研究[J]. 电源学报, 2020, 18(1): 54-60.
|
|
ZHANG L J, XU G N, ZHAO X Y, et al. Research on SOC estimation method for aging lithium battery based on neural network[J]. Journal of Power Supply, 2020, 18(1): 54-60.
|
12 |
李超然, 肖飞, 樊亚翔, 等. 基于深度学习的锂离子电池SOC和SOH联合估算[J]. 中国电机工程学报, 2021, 41(2): 681-692.
|
|
LI C R, XIAO F, FAN Y X, et al. Joint estimation of the state of charge and the state of health based on deep learning for lithium-ion batteries[J]. Proceedings of the CSEE, 2021, 41(2): 681-692.
|
13 |
刘兴涛, 李坤, 武骥, 等. 基于EKF-SVM算法的动力电池SOC估计[J]. 汽车工程, 2020, 42(11): 1522-1528, 1544.
|
|
LIU X T, LI K, WU J, et al. State of charge estimation for traction battery based on EKF-SVM algorithm[J]. Automotive Engineering, 2020, 42(11): 1522-1528, 1544.
|
14 |
JIAO M, YANG Y, WANG D Q, et al. The conjugate gradient optimized regularized extreme learning machine for estimating state of charge[J]. Ionics, 2021, 27(11): 4839-4848.
|
15 |
宋绍剑, 王志浩, 林小峰. 基于极限学习机的磷酸铁锂电池SOC估算研究[J]. 电源技术, 2018, 42(6): 806-808, 881.
|
|
SONG S J, WANG Z H, LIN X F. Research on SOC estimation of LiFePO4 batteries based on ELM[J]. Chinese Journal of Power Sources, 2018, 42(6): 806-808, 881.
|
16 |
CHUNG D W, KO J H, YOON K Y. State-of-charge estimation of lithium-ion batteries using LSTM deep learning method[J].Journal of Electrical Engineering & Technology, 2022, 17(3): 1931-1945.
|
17 |
ZHAO B, HU J, XU S P, et al. Estimation of the SOC of energy-storage lithium batteries based on the voltage increment[J]. IEEE Access, 2020, 8: 198706-198713.
|
18 |
TIAN J P, XIONG R, SHEN W X, et al. State-of-charge estimation of LiFePO4 batteries in electric vehicles: A deep-learning enabled approach[J]. Applied Energy, 2021, 291: doi: 10.1016/j.apenergy.2021.116812.
|
19 |
赵钢, 朱芳欣, 窦汝振. 基于PSO-BP的电动汽车锂离子电池SOC估算[J]. 电源技术, 2018, 42(9): 1318-1320.
|
|
ZHAO G, ZHU F X, DOU R Z. SOC estimation of lithium battery for electric vehicle based on PSO-BP neural network[J]. Chinese Journal of Power Sources, 2018, 42(9): 1318-1320.
|
20 |
高雪梅, 杨续超, 陈柏儒, 等. 基于随机森林模型的环渤海地区人口空间化模拟[J]. 地球信息科学学报, 2022, 24(6): 1150-1162.
|
|
GAO X M, YANG X C, CHEN B R, et al. Spatialization of population in the Bohai rim region using random forest model[J]. Journal of Geo-Information Science, 2022, 24(6): 1150-1162.
|
21 |
XING Y J, HE W, PECHT M, et al. State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures[J]. Applied Energy, 2014, 113: 106-115.
|
22 |
HOSSAIN LIPU M S, HANNAN M A, HUSSAIN A, et al. Extreme learning machine model for state-of-charge estimation of lithium-ion battery using gravitational search algorithm[J]. IEEE Transactions on Industry Applications, 2019, 55(4): 4225-4234.
|
23 |
彭铎, 杨雅文, 高玉蔚, 等. 基于多通信半径和麻雀搜索的节点定位算法[J]. 传感技术学报, 2021, 34(11): 1523-1529.
|
|
PENG D, YANG Y W, GAO Y W, et al. Node localization algorithm based on multi-communication radius and sparrow search algorithm[J]. Chinese Journal of Sensors and Actuators, 2021, 34(11): 1523-1529.
|