1 |
李军, 李虎林. 电动汽车锂离子电池荷电状态估算方法综述[J]. 科学技术与工程, 2022, 22(6): 2147-2158.
|
|
LI J, LI H L. Review of state of charge estimation methods for electric vehicle lithium-ion batteries[J]. Science Technology and Engineering, 2022, 22(6): 2147-2158.
|
2 |
程麒豫, 张希, 高一钊, 等. 基于降阶电化学模型估算锂离子电池状态[J]. 电池, 2021, 51(2): 110-113.
|
|
CHENG Q Y, ZHANG X, GAO Y Z, et al. Estimating state of Li-ion battery based on reduced-order electrochemical model[J]. Battery Bimonthly, 2021, 51(2): 110-113.
|
3 |
袁宏亮, 刘莉, 吕桃林, 等. 基于改进模型的锂离子电池SOC估计[J]. 电池, 2021, 51(5): 445-449.
|
|
YUAN H L, LIU L, LÜ T L, et al. SOC estimation for Li-ion battery based on improved model[J]. Battery Bimonthly, 2021, 51(5): 445-449.
|
4 |
付诗意, 吕桃林, 闵凡奇, 等. 电动汽车用锂离子电池SOC估算方法综述[J]. 储能科学与技术, 2021, 10(3): 1127-1136.
|
|
FU S Y, LÜ T L, MIN F Q, et al. Review of estimation methods on SOC of lithium-ion batteries in electric vehicles[J]. Energy Storage Science and Technology, 2021, 10(3): 1127-1136.
|
5 |
郑永飞, 文怀兴, 韩昉, 等. 基于LSTM神经网络的动力电池SOC估算研究[J]. 计算机应用与软件, 2020, 37(3): 78-81, 88.
|
|
ZHENG Y F, WEN H X, HAN F, et al. Soc estimation of power battery based on lstm neural network[J]. Computer Applications and Software, 2020, 37(3): 78-81, 88.
|
6 |
HUANG Z L, YANG F F, XU F, et al. Convolutional gated recurrent unit-recurrent neural network for state-of-charge estimation of lithium-ion batteries[J]. IEEE Access, 2019, 7: 93139-93149.
|
7 |
李泱, 张营, 邹博雨, 等. 基于EMD-GPR的锂离子电池剩余寿命预测方法研究[J]. 农业装备与车辆工程, 2021, 59(11): 60-63.
|
|
LI Y, ZHANG Y, ZOU B Y, et al. Research on residual life prediction method of lithium ion battery based on EMD-GPR[J]. Agricultural Equipment & Vehicle Engineering, 2021, 59(11): 60-63.
|
8 |
易灵芝, 张宗光, 范朝冬, 等. 基于EEMD-GSGRU的锂电池寿命预测[J]. 储能科学与技术, 2020, 9(5): 1566-1573.
|
|
YI L Z, ZHANG Z G, FAN C D, et al. Life prediction of lithium battery based on EEMD-GSGRU[J]. Energy Storage Science and Technology, 2020, 9(5): 1566-1573.
|
9 |
杨彦茹, 温杰, 史元浩, 等. 基于CEEMDAN和SVR的锂离子电池剩余使用寿命预测[J]. 电子测量与仪器学报, 2020, 34(12): 197-205.
|
|
YANG Y R, WEN J, SHI Y H, et al. Remaining useful life prediction for lithium-ion battery based on CEEMDAN and SVR[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(12): 197-205.
|
10 |
宋绍剑, 王志浩, 林小峰. 基于极限学习机的磷酸铁锂电池SOC估算研究[J]. 电源技术, 2018, 42(6): 806-808, 881.
|
|
SONG S J, WANG Z H, LIN X F. Research on SOC estimation of LiFePO4 batteries based on ELM[J]. Chinese Journal of Power Sources, 2018, 42(6): 806-808, 881.
|
11 |
缪家森, 成丽珉, 吕宏水. 基于PSO-ELM的储能锂电池荷电状态估算[J]. 电力工程技术, 2020, 39(1): 165-169, 199.
|
|
MIAO J S, CHENG L M, LÜ H S. Estimation of state of charge of energy storage lithium battery based on PSO-ELM[J]. Electric Power Engineering Technology, 2020, 39(1): 165-169, 199.
|
12 |
LI C Q, ZHOU J, TAO M, et al. Developing hybrid ELM-ALO, ELM-LSO and ELM-SOA models for predicting advance rate of TBM[J]. Transportation Geotechnics, 2022, 36: doi:10.1016/j.trgeo.2022.100819.
|
13 |
戴婷, 张榆锋, 章克信, 等. 经验模态分解及其模态混叠消除的研究进展[J]. 电子技术应用, 2019, 45(3): 7-12.
|
|
DAI T, ZHANG Y F, ZHANG K X, et al. The research progress of empirical mode decomposition and mode mixing elimination[J]. Application of Electronic Technique, 2019, 45(3): 7-12.
|
14 |
李昌明. 经验模态分解融合深度学习的时间序列预测模型[J]. 辽宁工程技术大学学报(自然科学版), 2022, 41(2): 175-183.
|
|
LI C M. Time series prediction model fusing empirical mode decomposition and deep learning[J]. Journal of Liaoning Technical University (Natural Science), 2022, 41(2): 175-183.
|
15 |
万磊, 余飞, 鲁统伟, 等. 基于CEEMDAN-CNN-GRU组合模型的短期负荷预测方法[J]. 河北科技大学学报, 2022, 43(2): 154-161.
|
|
WAN L, YU F, LU T W, et al. Short-term load forecasting based on CEEMDAN-CNN-GRU combined model[J]. Journal of Hebei University of Science and Technology, 2022, 43(2): 154-161.
|
16 |
赵凌云, 刘友波, 沈晓东, 等. 基于CEEMDAN和改进时间卷积网络的短期风电功率预测模型[J]. 电力系统保护与控制, 2022, 50(1): 42-50.
|
|
ZHAO L Y, LIU Y B, SHEN X D, et al. Short-term wind power prediction model based on CEEMDAN and an improved time convolutional network[J]. Power System Protection and Control, 2022, 50(1): 42-50.
|
17 |
HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501.
|
18 |
丁阳征. 基于ELM的锂离子电池剩余寿命预测方法研究[D]. 太原: 中北大学, 2019.DING Y Z. Remaining useful life prediction method of lithium ion batteries based on extreme learning machine[D]. Taiyuan: North University of China, 2019.
|
19 |
王亦乐, 黄宏成, 杨健, 等. 基于SSA-ELM的动力电池健康状况预测研究[J]. 传动技术, 2022, 36(2): 3-6, 13.
|
|
WANG Y L, HUANG H C, YANG J, et al. Prediction of power battery health state based on SSA-ELM[J]. Drive System Technique, 2022, 36(2): 3-6, 13.
|
20 |
吴婧睿. 基于GSO-ELM的锂离子电池剩余寿命间接预测方法研究[D]. 大连: 大连海事大学, 2017.
|
|
WU J R. Research on indirect prediction method of remaining life based on GSO-ELM for lithium-ion battery[D]. Dalian: Dalian Maritime University, 2017.
|
21 |
周召娣. 极限学习机相关算法的优化及应用研究[D]. 南京: 南京信息工程大学, 2016.
|
|
ZHOU Z D. Research on optimization and application of extreme learning machine[D]. Nanjing: Nanjing University of Information Science & Technology, 2016.
|
22 |
DHIMAN G, KUMAR V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems[J]. Knowledge-Based Systems, 2019, 165: 169-196.
|
23 |
毛玲, 胡慧仲, 赵晋斌, 等. 一种多时间尺度下的锂离子电池剩余寿命混合预测方法[J]. 供用电, 2021, 38(6): 7-13.
|
|
MAO L, HU H Z, ZHAO J B, et al. A hybrid prediction method of lithium-ion battery remaining useful life under multiple time scales[J]. Distribution & Utilization, 2021, 38(6): 7-13.
|