储能科学与技术 ›› 2023, Vol. 12 ›› Issue (4): 1257-1267.doi: 10.19799/j.cnki.2095-4239.2022.0767

• 储能测试与评价 • 上一篇    下一篇

基于SVD-SAE-GPR的锂离子电池RUL预测

董渊昌1(), 庞晓琼1(), 贾建芳2, 史元浩2, 温杰2, 李笑1, 张鑫1   

  1. 1.中北大学计算机科学与技术学院
    2.中北大学电气与控制工程学院,山西 太原 030051
  • 收稿日期:2022-12-27 修回日期:2023-02-21 出版日期:2023-04-05 发布日期:2023-05-08
  • 通讯作者: 庞晓琼 E-mail:dyc36309123@163.com;xqpang@nuc.edu.cn
  • 作者简介:董渊昌(1999—),男,硕士研究生,研究方向为复杂系统的故障预测与健康管理,E-mail:dyc36309123@163.com
  • 基金资助:
    国家自然科学基金(7207011096);山西省高性能电池材料与器件重点实验室开放基金(2022HPBMD01002);中国山西省留学基金委资助课题(2020-114)

Remaining useful life prediction of lithium-ion batteries based on SVD-SAE-GPR

Yuanchang DONG1(), Xiaoqiong PANG1(), Jianfang JIA2, Yuanhao SHI2, Jie WEN2, Xiao LI1, Xin ZHANG1   

  1. 1.School of Computer Science and Technology
    2.School of Electrical and Control Engineering, North University of China, Taiyuan 030051, Shanxi, China
  • Received:2022-12-27 Revised:2023-02-21 Online:2023-04-05 Published:2023-05-08
  • Contact: Xiaoqiong PANG E-mail:dyc36309123@163.com;xqpang@nuc.edu.cn

摘要:

锂离子电池是重要的储能手段之一,对其剩余使用寿命(RUL)进行预测具有非常重要的实际意义。本工作首先针对传统特征提取方法依赖参数设置且对于不同锂离子电池数据集适应性差的缺陷,将电池数据视作矩阵,并引入奇异值分解(SVD)从测量数据和包含更多退化信息的特征提取对象中提取潜在健康因子(HIs)。其次,潜在HIs的冗余和不足会影响RUL的预测,同时考虑到主成分分析(PCA)的缺点,使用Spearman相关分析和堆叠自编码器(SAE)处理HIs得到一个融合HI。在此基础上,利用高斯过程回归(GPR)算法构建了融合HI与容量之间的模型,得到了带有不确定性表达的最终预测结果。最后,通过NASA提供的四个老化电池数据验证了所提预测模型的可行性和有效性。并额外选取MIT电池数据集验证特征提取方法的适应性。实验结果表明,所提出的RUL预测框架具有较好的预测性能,SVD特征提取方法在避免参数设置的前提下具有较好的适应性。本工作提取的HI与经过PCA融合的HI、其他HI相比,预测精度有显著提高。

关键词: 锂离子电池, 剩余使用寿命(RUL), 奇异值分解, 堆叠自编码器, 高斯过程回归

Abstract:

Lithium-ion batteries are an important energy storage sources, and it is of great practical importance to predict their remaining useful life (RUL). First, the battery data are treated as matrices, and singular value decomposition (SVD) is introduced to extract the potential health indicator (HI) from the measured data and the feature extraction objects containing more degradation information. This will address the drawbacks of traditional feature extraction methods that rely on parameter settings and poor adaptability to different lithium-ion battery datasets. Second, the redundancy and deficiency of potential HIs affect the prediction of RUL, and thus, a fused HI is obtained by processing HIs using Spearman correlation analysis and stacked autoencoder, considering the shortcomings of principal component analysis (PCA). Accordingly, a model between fused HI and capacity is constructed using the Gaussian process regression algorithm, and the final prediction results with uncertainty expression are obtained. Finally, the feasibility and validity of the proposed prediction model are verified by four aging batteries provided by NASA. The MIT battery dataset is used to verify the adaptability of the feature extraction method. The experimental results show that the proposed RUL prediction framework has good prediction performance and that the SVD feature extraction method has good adaptability while avoiding parameter settings. The HI extracted in this paper has significantly improved the prediction accuracy compared with the HI after PCA fusion and other HIs.

Key words: lithium-ion batteries, remaining useful life, singular value decomposition, stacked autoencoder, gaussian process regression

中图分类号: