1 |
PARGOLETTI E, ARNABOLDI S, CAPPELLETTI G, et al. Smart interfaces in Li-ion batteries: Near-future key challenges[J]. Electrochimica Acta, 2022, 415: doi: 10.1016/j.electacta.2022.140258.
|
2 |
梁新成, 张勉, 黄国钧. 基于BMS的锂离子电池建模方法综述[J]. 储能科学与技术, 2020, 9(6): 1933-1939.
|
|
LIANG X C, ZHANG M, HUANG G J. Review on lithium-ion battery modeling methods based on BMS[J]. Energy Storage Science and Technology, 2020, 9(6): 1933-1939.
|
3 |
HU X S, ZHANG K, LIU K L, et al. Advanced fault diagnosis for lithium-ion battery systems: A review of fault mechanisms, fault features, and diagnosis procedures[J]. IEEE Industrial Electronics Magazine, 2020, 14(3): 65-91.
|
4 |
陈翌, 白云飞, 何瑛. 数据驱动的锂电池健康状态估算方法比较[J]. 储能科学与技术, 2019, 8(6): 1204-1210.
|
|
CHEN Y, BAI Y F, HE Y. Comparison of data-driven lithium battery state of health estimation methods[J]. Energy Storage Science and Technology, 2019, 8(6): 1204-1210.
|
5 |
PANG X Q, ZHAO Z, WEN J, et al. An interval prediction approach based on fuzzy information granulation and linguistic description for remaining useful life of lithium-ion batteries[J]. Journal of Power Sources, 2022, 542: doi: 10.1016/j.jpowsour.2022.231750.
|
6 |
CHU A, ALLAM A, CORDOBA ARENAS A, et al. Stochastic capacity loss and remaining useful life models for lithium-ion batteries in plug-in hybrid electric vehicles[J]. Journal of Power Sources, 2020, 478: doi: 10.1016/i.jpowsour.2020.228991.
|
7 |
ZHOU W L, LU Q, ZHENG Y P. Review on the selection of health indicator for lithium ion batteries[J]. Machines, 2022, 10(7): 512.
|
8 |
KHALEGHI S, HOSEN M S, KARIMI D, et al. Developing an online data-driven approach for prognostics and health management of lithium-ion batteries[J]. Applied Energy, 2022, 308: doi: 10.1016/j.apenergy.2021.118348.
|
9 |
JIA J F, YUAN S F, SHI Y H, et al. Improved sparrow search algorithm optimization deep extreme learning machine for lithium-ion battery state-of-health prediction[J]. iScience, 2022, 25(4): doi:10.1016/j.isci.2022.103988.
|
10 |
李旭东, 张向文. 基于主成分分析与WOA-Elman的锂离子电池SOH估计[J]. 储能科学与技术, 2022, 11(12): 4010-4021.
|
|
LI X D, ZHANG X W. State of health estimation method for lithium-ion batteries based on principal component analysis and whale optimization algorithm-Elman model[J]. Energy Storage Science and Technology, 2022, 11(12): 4010-4021.
|
11 |
LIU J, CHEN Z Q. Remaining useful life prediction of lithium-ion batteries based on health indicator and Gaussian process regression model[J]. IEEE Access, 2019, 7: 39474-39484.
|
12 |
PANG X Q, LIU X Y, JIA J F, et al. A lithium-ion battery remaining useful life prediction method based on the incremental capacity analysis and Gaussian process regression[J]. Microelectronics Reliability, 2021, 127: doi: 10.1016/j.microrel.2021.114405.
|
13 |
PAN W J, LUO X S, ZHU M T, et al. A health indicator extraction and optimization for capacity estimation of Li-ion battery using incremental capacity curves[J]. Journal of Energy Storage, 2021, 42: doi: 10.1016/j.est.2021.103072.
|
14 |
WALL M E, RECHTSTEINER A, ROCHA L M. Singular value decomposition and principal component analysis[M]//A Practical Approach to Microarray Data Analysis. Boston: Kluwer Academic Publishers, 2005: 91-109.
|
15 |
GU X Y, SEE K W, LI P H, et al. A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model[J]. Energy, 2023, 262: doi:10.1016/j.energy.2022.125501.
|
16 |
WEI M, YE M, WANG Q, et al. Remaining useful life prediction of lithium-ion batteries based on stacked autoencoder and Gaussian mixture regression[J]. Journal of Energy Storage, 2022, 47: doi: 10.1016/j.est.2021.103558.
|
17 |
王瑞洁, 惠周利, 杨明. 基于间接健康指标的高斯过程回归对锂电池SOH预测[J]. 储能科学与技术, 2023, 12(2): 560-569.
|
|
WANG R J, HUI Z L, YANG M. Gaussian process regression based on indirect health indicators for SOH estimation of lithium battery[J]. Energy Storage Science and Technology, 2023, 12(2): 560-569.
|
18 |
SAHA B, GOEBEL K. Battery data set[R/OL]. [2020-10-20]. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/.
|
19 |
TANG T, YUAN H M. The capacity prediction of Li-ion batteries based on a new feature extraction technique and an improved extreme learning machine algorithm[J]. Journal of Power Sources, 2021, 514: doi: 10.1016/j.jpowsour.2021. 230572.
|
20 |
FLY A, CHEN R. Rate dependency of incremental capacity analysis (dQ/dV) as a diagnostic tool for lithium-ion batteries[J]. Journal of Energy Storage, 2020, 29:doi:10.1016/j.est.2020. 101329.
|
21 |
BLOOM I, CHRISTOPHERSEN J P, ABRAHAM D P, et al. Differential voltage analyses of high-power lithium-ion cells[J]. Journal of Power Sources, 2006, 157(1): 537-542.
|
22 |
SHIBAGAKI T, MERLA Y, OFFER G J. Tracking degradation in lithium iron phosphate batteries using differential thermal voltammetry[J]. Journal of Power Sources, 2018, 374: 188-195.
|
23 |
SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5): 383-391.
|
24 |
CLERICI D, MOCERA F, SOMÀ A. Electrochemical-mechanical multi-scale model and validation with thickness change measurements in prismatic lithium-ion batteries[J]. Journal of Power Sources, 2022, 542: doi: 10.1016/j.jpowsour.2022. 231735.
|
25 |
ATTIA P M, GROVER A, JIN N, et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning[J]. Nature, 2020, 578(7795): 397-402.
|