1 |
WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131.
|
2 |
OUYANG D X, CHEN M Y, LIU J H, et al. Investigation of a commercial lithium-ion battery under overcharge/over-discharge failure conditions[J]. RSC Advances, 2018, 8(58): 33414-33424.
|
3 |
ZHAO R, LIU J, GU J J. A comprehensive study on Li-ion battery nail penetrations and the possible solutions[J]. Energy, 2017, 123: 392-401.
|
4 |
MAO B B, CHEN H D, CUI Z X, et al. Failure mechanism of the lithium ion battery during nail penetration[J]. International Journal of Heat and Mass Transfer, 2018, 122: 1103-1115.
|
5 |
YE M Q, HU G D, GUO F, et al. A novel semi-analytical solution for calculating the temperature distribution of the lithium-ion batteries during nail penetration based on Green's function method[J]. Applied Thermal Engineering, 2020,174: doi: 10.1016/j.appl thermaleng. 2020.115129.
|
6 |
JIA Y K, UDDIN M, LI Y X, et al. Thermal runaway propagation behavior within 18650 lithium-ion battery packs: A modeling study[J]. Journal of Energy Storage, 2020, 31: doi: 10.1016/j.est.2020.101668.
|
7 |
JIN C Y, SUN Y D, YAO J, et al. No thermal runaway propagation optimization design of battery arrangement for cell-to-chassis technology[J]. eTransportation, 2022,14: doi: 10.1016/j.etran. 2022. 100199.
|
8 |
WANG W H, HE T F, HE S, et al. Modeling of thermal runaway propagation of NMC battery packs after fast charging operation[J]. Process Safety and Environmental Protection, 2021, 154: 104-117.
|
9 |
WANG Z R, HE T F, BIAN H, et al. Characteristics of and factors influencing thermal runaway propagation in lithium-ion battery packs[J]. Journal of Energy Storage, 2021, 41: doi: 10.1016/j.est. 2021.102956.
|
10 |
李斌, 汪展, 李国清, 等. EFB电池负极用炭材料的研究[J]. 蓄电池, 2022, 59(3): 114-116, 122.
|
|
LI B, WANG Z, LI G Q, et al. Study on carbon materials for negative electrode of EFB battery[J]. Chinese LABAT Man, 2022, 59(3): 114-116, 122.
|
11 |
车雯, 万晓雯, 何辉辉, 等. 锂离子电池正极材料LiCoMnO4制备及其电化学性能研究[J]. 应用技术学报, 2021, 21(2): 138-143.
|
|
CHE W, WAN X W, HE H H, et al. Optimized synthesis and electrochemical performance of LiCoMnO4 cathode material for lithium-ion batteries[J]. Journal of Technology, 2021, 21(2): 138-143.
|
12 |
PAN C F, TANG Q M, HE Z G, et al. Structure optimization of battery module with a parallel multi-channel liquid cooling plate based on orthogonal test[J]. Journal of Electrochemical Energy Conversion and Storage, 2020, 17(2): 021104.
|
13 |
WANG J G, LU S, WANG Y Z, et al. Effect analysis on thermal behavior enhancement of lithium-ion battery pack with different cooling structures[J]. Journal of Energy Storage, 2020, 32: doi:10.1016/j.est.2020.101800.
|
14 |
宋亚娟, 沈杰, 徐震, 等. 低速电动车用锂离子电池热失控风险监测研究[J]. 电源技术, 2021, 45(8): 1005-1007.
|
|
SONG Y J, SHEN J, XU Z, et al. Study on the risk of thermal runaway in the lithium ion battery for low speed electric vehicle[J]. Chinese Journal of Power Sources, 2021, 45(8): 1005-1007.
|
15 |
黄文才. 基于COMSOL的锂离子电池热失控模拟分析和研究[D]. 成都: 西南交通大学, 2019.
|
|
HUANG W C. Simulation and research on thermal runaway of lithium ion battery based on COMSOL[D]. Chengdu: Southwest Jiaotong University, 2019.
|
16 |
XU J J, MEI W X, ZHAO C P, et al. Study on thermal runaway mechanism of 1000 mAh lithium ion pouch cell during nail penetration[J]. Journal of Thermal Analysis and Calorimetry, 2021, 144(2): 273-284.
|
17 |
刘仕强, 王芳, 樊彬, 等. 针刺速度对动力锂离子电池安全性的影响[J]. 汽车安全与节能学报, 2013, 4(1): 82-86.
|
|
LIU S Q, WANG F, FAN B, et al. Influence of penetration speeds on power Li-ion-cell's safety performance[J]. Journal of Automotive Safety and Energy, 2013, 4(1): 82-86.
|
18 |
陈天雨, 高尚, 冯旭宁, 等. 锂离子电池热失控蔓延研究进展[J]. 储能科学与技术, 2018, 7(6): 1030-1039.
|
|
CHEN T Y, GAO S, FENG X N, et al. Recent progress on thermal runaway propagation of lithium-ion battery[J]. Energy Storage Science and Technology, 2018, 7(6): 1030-1039.
|
19 |
WANG H B, DU Z M, RUI X Y, et al. A comparative analysis on thermal runaway behavior of Li(NixCoyMnz)O2 battery with different nickel contents at cell and module level[J]. Journal of Hazardous Materials, 2020, 393: doi: 10.1016/j.jhazmat.2020.122361.
|