1 |
国务院办公厅. 国务院办公厅关于印发新能源汽车产业发展规划(2021—2035年)的通知 [EB/OL]. (2020-11-2) [2024-3-15]. https://www.gov.cn/zhengce/zhengceku/2020-11/02/content_5556716.htm.
|
2 |
EV世纪. 2023年我国新能源汽车销售949.5万辆,市占率达31.6% [EB/OL]. (2024-1-11) [2024-3-15]. https://new.qq.com/rain/a/20240111A0958H00.
|
3 |
WANG H B, DU Z M, RUI X Y, et al. A comparative analysis on thermal runaway behavior of Li (NixCoyMnz)O2 battery with different nickel contents at cell and module level[J]. Journal of Hazardous Materials, 2020, 393: 122361. DOI: 10.1016/j.jhazmat.2020.122361.
|
4 |
RAO Z H, WANG S F. A review of power battery thermal energy management[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4554-4571. DOI: 10.1016/j.rser.2011.07.096.
|
5 |
WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. DOI: 10.1016/j.pecs.2019.03.002.
|
6 |
FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. DOI: 10.1016/j.ensm.2017.05.013.
|
7 |
SUN P Y, BISSCHOP R, NIU H C, et al. A review of battery fires in electric vehicles[J]. Fire Technology, 2020, 56(4): 1361-1410. DOI: 10.1007/s10694-019-00944-3.
|
8 |
张良, 张得胜, 陈克, 等. 动力电池热失控引发电动汽车火灾的典型特征研究[J]. 中国安全生产科学技术, 2020, 16(7): 94-99. DOI: 10.11731/j.issn.1673-193x.2020.07.015.
|
|
ZHANG L, ZHANG D S, CHEN K, et al. Research on typical characteristics of electric vehicle fire caused by thermal runaway of power battery[J]. Journal of Safety Science and Technology, 2020, 16(7): 94-99. DOI: 10.11731/j.issn.1673-193x.2020.07.015.
|
9 |
夏继豪. 纯电动汽车的火灾特性及热释放速率探讨[J]. 安全与环境学报, 2021, 21(3): 1028-1032. DOI: 10.13637/j.issn.1009-6094.2020.1148.
|
|
XIA J H. Discussion on fire characteristics and heat release rate of blade electric vehi-cles[J]. Journal of Safety and Environment, 2021, 21(3): 1028-1032. DOI: 10.13637/j.issn.1009-6094.2020.1148.
|
10 |
MAO B B, CHEN H D, CUI Z X, et al. Failure mechanism of the lithium ion battery during nail penetration[J]. International Journal of Heat and Mass Transfer, 2018, 122: 1103-1115. DOI: 10.1016/j.ijheatmasstransfer.2018.02.036.
|
11 |
JEEVARAJAN J A. Hazards associated with high voltage high capacity lithium-ion batteries[J]. ECS Transactions, 2011, 33(22): 1-6. DOI: 10.1149/1.3557704.
|
12 |
RIBIÈRE P, GRUGEON S, MORCRETTE M, et al. Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry[J]. Energy & Environmental Science, 2012, 5(1): 5271-5280. DOI: 10.1039/C1EE02218K.
|
13 |
AURBACH D, TALYOSEF Y, MARKOVSKY B, et al. Design of electrolyte solutions for Li and Li-ion batteries: A review[J]. Electrochimica Acta, 2004, 50(2/3): 247-254. DOI: 10.1016/j.electacta.2004.01.090.
|
14 |
HUBBLE D, BROWN D E, ZHAO Y Z, et al. Liquid electrolyte development for low-temperature lithium-ion batteries[J]. Energy & Environmental Science, 2022, 15(2): 550-578. DOI: 10.1039/D1EE01789F.
|
15 |
ZHANG S S, JOW T R, AMINE K, et al. LiPF6-EC-EMC electrolyte for Li-ion battery[J]. Journal of Power Sources, 2002, 107(1): 18-23. DOI: 10.1016/S0378-7753(01)00968-5.
|
16 |
中国化学品安全协会. 电解液配制过程中爆炸致3人死亡,锂电池高速发展安全风险凸显 [EB/OL]. (2023-08-22) [2024-03-25]. https://zhuanlan.zhihu.com/p/651542493.
|
17 |
北京市应急管理局. 丰台区"4⋅16"较大火灾事故调查报告 [EB/OL]. (2021-11-22) [2024-03-25]. http://yjglj.beijing.gov.cn/art/2021/11/22/art_7466_470.html.
|
18 |
KUMAI K, MIYASHIRO H, KOBAYASHI Y, et al. Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell[J]. Journal of Power Sources, 1999, 81: 715-719. DOI: 10.1016/S0378-7753(98)00234-1.
|
19 |
CHEN M Y, XIAO R, ZHAO L Y, et al. Experimental study on the combustion characteristics of carbonate solvents under different thermal radiation by cone calorimeter[J]. Applied Thermal Engineering, 2022, 211: 118428. DOI: 10.1016/j.applthermaleng. 2022.118428.
|
20 |
ESHETU G G, GRUGEON S, LARUELLE S, et al. In-depth safety-focused analysis of solvents used in electrolytes for large scale lithium ion batteries[J]. Physical Chemistry Chemical Physics, 2013, 15(23): 9145-9155. DOI: 10.1039/c3cp51315g.
|
21 |
TAKAHASHI S, KANAYAMA K, MORIKURA S, et al. Study on oxidation and pyrolysis of carbonate esters using a micro flow reactor with a controlled temperature profile. Part II: Chemical kinetic modeling of ethyl methyl carbonate[J]. Combustion and Flame, 2022, 238: 111878. DOI: 10.1016/j.combustflame. 2021.111878.
|
22 |
GRÉGOIRE C M, COOPER S P, KHAN-GHAURI M, et al. Pyrolysis study of dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate using shock-tube spectroscopic CO measurements and chemical kinetics investigation[J]. Combustion and Flame, 2023, 249: 112594. DOI: 10.1016/j.combustflame.2022.112594.
|
23 |
ZHANG J B, ZHONG A H, HUANG Z, et al. Experimental and kinetic study on the stabilities and gas generation of typical electrolyte solvent components under oxygen-lean oxidation and pyrolysis conditions[J]. Science China Technological Sciences, 2022, 65(12): 2883-2894. DOI: 10.1007/s11431-022-2184-x.
|
24 |
Determination of the explosion limits and the limiting oxygen concentration(LOC) for flammable gases and vapours: EN 1839-2017 [S]. CEN, 2017:
|
25 |
Determination of maximum explosion pressure and the maximum rate of pressure rise of gases and vapours: BS EN 15967[S]. 2011:
|
26 |
NAKAMURA H, CURRAN H J, POLO CÓRDOBA A, et al. An experimental and modeling study of diethyl carbonate oxidation[J]. Combustion and Flame, 2015, 162(4): 1395-1405. DOI: 10.1016/j.combustflame.2014.11.002.
|
27 |
ALEXANDRINO K, ALZUETA M U, CURRAN H J. An experimental and modeling study of the ignition of dimethyl carbonate in shock tubes and rapid compression machine[J]. Combustion and Flame, 2018, 188: 212-226. DOI: 10.1016/j.combustflame.2017.10.001.
|
28 |
AÑEZ R, HERIZE A, SIERRAALTA A, et al. DFT Study of substituent effects of 2-substituted alkyl ethyl methylcarbonates in homogeneous, unimolecular gas phase elimination kinetics[J]. International Journal of Chemical Kinetics, 2006, 38(3): 184-193. DOI: 10.1002/kin.20159.
|
29 |
CHUCHANI G, MARQUEZ E, HERIZE A, et al. Mechanism and structure-reactivity correlation in the homogeneous, unimolecular elimination kinetics of 2‐substituted ethyl methylcarbonates in the gas phase[J]. Journal of Physical Organic Chemistry, 2003, 16(11): 839-848.
|
30 |
NOTARIO R, QUIJANO J, SÁNCHEZ C, et al. Theoretical study of the mechanism of thermal decomposition of carbonate esters in the gas phase[J]. Journal of Physical Organic Chemistry, 2005, 18(2): 134-141. DOI: 10.1002/poc.866.
|
31 |
CROSS J T D, HUNTER R, STIMSON V R. ChemInform Abstract: The thermal decomposition of simple carbonate esters[J]. Chemischer Informationsdienst, 1976, 7(46): DOI: 10.1002/chin.197646124.
|
32 |
GORDON ALVIN S, NORRIS WILLIAM P. A study of the pyrolysis of methyl ethyl and diethyl carbonates in the gas phase[J]. The Journal of Physical Chemistry, 1965, 69(9): 3013-3017.
|
33 |
TAYLOR R. The mechanism of thermal eliminations. Part 15. Abnormal rate spread in pyrolysis of alkyl methyl carbonates and S-alkyl O-methyl carbonates due to enhanced nucleophilicity of the carbonyl group[J]. Journal of the Chemical Society, Perkin Transactions 2, 1983(3): 291. DOI: 10.1039/p29830000291.
|
34 |
郑康雪. 氨气/甲醇/空气爆炸特性和影响因素研究[D]. 合肥: 中国科学技术大学, 2023.
|
|
ZHENG K X. Study on explosion characteristics and influencing factors of ammonia/methanol/air[D]. Hefei: University of Science and Technology of China, 2023.
|
35 |
RAZUS D, BRINZEA V, MITU M, et al. Temperature and pressure influence on maximum rates of pressure rise during explosions of propane–air mixtures in a spherical vessel[J]. Journal of Hazardous Materials, 2011, 190(1/2/3): 891-896. DOI: 10.1016/j.jhazmat.2011.04.018.
|
36 |
ZABETAKIS M G. Flammability characteristics of combustible gases and vapors[M]. Washington D C: U. S. Dept. of the Interior, Bureau of Mines, 1965.
|
37 |
COWARD H F, JONES G W. Limits of flammability of gases and vapors[M]. 4th ed. Washington D C: U. S. Dept. of the Interior, Bureau of Mines, 1952.
|
38 |
ZHANG K, SHANG S, LI X L, et al. Lower flammability limits of NH3/H2 mixtures under different initial temperatures and initial pressures[J]. Fuel, 2023, 331: 125982. DOI: 10.1016/j.fuel.2022.125982.
|