储能科学与技术 ›› 2024, Vol. 13 ›› Issue (10): 3307-3318.doi: 10.19799/j.cnki.2095-4239.2024.0325

• 储能材料与器件 • 上一篇    下一篇

粉末尺寸对等离子喷涂Li1.3Al0.3Ti1.7(PO4)3 电解质成分与结构的影响

熊思琪(), 卜晓晨, 雒晓涛, 李长久()   

  1. 西安交通大学材料科学与工程学院,金属材料强度国家重点实验室,陕西 西安 710049
  • 收稿日期:2024-04-15 修回日期:2024-06-11 出版日期:2024-10-28 发布日期:2024-10-30
  • 通讯作者: 李长久 E-mail:xiongsiqi@stu.xjtu.edu.cn;licj@mail.xjtu.edu.cn
  • 作者简介:熊思琪(1999—),女,硕士研究生,研究方向为大气等离子喷涂制备全固态锂离子电池,E-mail:xiongsiqi@stu.xjtu.edu.cn
  • 基金资助:
    国家重大科技专项(2019-VII-0007-0147)

The effect of particle size on the composition and microstructure of Li1.3Al0.3Ti1.7(PO4)3 electrolyte deposited by air plasma spraying

Siqi XIONG(), Xiaochen BU, Xiaotao LUO, Changjiu LI()   

  1. State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
  • Received:2024-04-15 Revised:2024-06-11 Online:2024-10-28 Published:2024-10-30
  • Contact: Changjiu LI E-mail:xiongsiqi@stu.xjtu.edu.cn;licj@mail.xjtu.edu.cn

摘要:

全固态锂离子电池(ASSLiBs)由于其能量密度高、安全性好、长期稳定性优越等特点,被广泛研究应用于替代液态电解质锂电池,而发展致密高性能固态电解质的低成本大规模制备技术是推动ASSLiBs商业应用的关键。NASICON型Li1.3Al0.3Ti1.7(PO4)3(LATP)固态电解质因其离子电导率高、化学稳定性优越,有望应用于ASSLiBs制造。本研究采用具有低成本制造特征的大气等离子喷涂技术制备了LATP单个粒子和涂层,系统研究了喷涂参数和粉末粒径对涂层中的P元素含量和涂层的组织结构的影响,探讨了喷涂过程中P元素蒸发损失存在的尺寸效应。结果表明电弧功率对可完全熔化的LATP粒子的临界直径具有显著影响,能够完全熔化的最大粉末粒径随电弧功率的增加而增大,在42 kW下,50 μm以下的粉末可以完全熔化;在完全熔化条件下,当粉末粒径小于25 μm时,P的损失量随着粉末粒径的增大而减少;当粒径大于25 μm时,P的蒸发损失达到最小且随粉末粒径变化较小;电弧功率对P的蒸发影响显著,当电弧功率从34 kW增加至42 kW时,P的损失量从5%增加至10%。采用粒径范围30~50 μm的LATP粉末,通过喷涂参数适配,可以制备具有良好层间结合,相结构稳定的适合于ASSLiBs的致密LATP电解质。

关键词: 全固态锂离子电池, 等离子喷涂, LATP, 元素优先蒸发, 尺寸效应

Abstract:

Lithium-ion batteries are regarded as one of the most promising energy storage devices. However, traditional lithium-ion batteries face safety risks due to flammable organic liquid electrolytes and are limited by their energy density. All-solid-state lithium-ion batteries (ASSLiBs) are emerging as a safer and more energy-dense alternative, offering improved electrochemical cycle performance and long-term stability. A critical challenge for ASSLiBs is the cost-effective fabrication of solid electrolytes. NASICON-type Li1.3Al0.3Ti1.7(PO4)3 (LATP) material has attracted wide attention due to its high ionic conductivity and stability under humidity conditions. Atmospheric plasma spraying (APS) is a low-cost and high-efficiency coating technology that involves heating and accelerating powder materials with a plasma jet to form continuous deposits on a substrate. This study investigates the preparation of LATP splats and deposits via APS, focusing on how spray parameters and particle size affect P content and the microstructure of the deposits. Results show that plasma arc power has a significant effect on the melting degree of LATP particles, with the fraction of completely melted particles increasing with the increase of the arc power. When the arc power increases from 34 kW to 42 kW, the fraction of fully-molten splats grows from 32.9% to 53.5%, and the maximum particle size increases from 34.3 μm to 48.5 μm. Additionally, P preferentially evaporates during plasma spraying, with a particle size effect on P loss when particle size is smaller than 25 μm. Smaller particles leads to greater P evaporation, with the lowest loss of 5% observed at 34 kW arc power, increasing to 10% at 42 kW. The particle size distribution also has a significant effect on the microstructure of plasma-sprayed LATP deposits. Dense electrolytes are achieved using the powder A with a particle size range of 30—50 μm at an arc power of 42 kW. The phase structure of LATP deposits remains consistent with that of the starting powder, indicating that plasma spraying does not alter its phase structure. These results underscore the potential of APS for large-scale preparation of LATP electrolytes.

Key words: all-solid-state lithium-ion batteries, plasma spraying, electrolyte, LATP, preferential vaporization, particle size effect

中图分类号: