1 |
NISHI Y. The development of lithium ion secondary batteries[J]. Chemical Record, 2001, 1(5): 406-413. DOI: 10.1002/tcr.1024.
|
2 |
LU X, WANG Y M, XU X Y, et al. Polymer-based solid-state electrolytes for high-energy-density lithium-ion batteries–review[J]. Advanced Energy Materials, 2023, 13(38): 2301746. DOI: 10.1002/aenm.202301746.
|
3 |
李杨, 丁飞, 桑林, 等. 全固态锂离子电池关键材料研究进展[J]. 储能科学与技术, 2016, 5(5): 615-626. DOI: 10.12028/j.issn.2095-4239.2016.0043.
|
|
LI Y, DING F, SANG L, et al. A review of key materials for all-solid-state lithium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(5): 615-626. DOI: 10.12028/j.issn.2095-4239.2016.0043.
|
4 |
ZHENG F, KOTOBUKI M, SONG S F, et al. Review on solid electrolytes for all-solid-state lithium-ion batteries[J]. Journal of Power Sources, 2018, 389: 198-213. DOI: 10.1016/j.jpowsour. 2018.04.022.
|
5 |
易永利, 于冉, 李武, 等. Mo, Al掺杂的Li7La3Zr2O12基复合固态电解质的制备及全固态电池性能研究[J]. 储能科学与技术, 2023, 12(5): 1490-1499. DOI: 10.19799/j.cnki.2095-4239.2023.0197.
|
|
YI Y L, YU R, LI W, et al. Preparation of Mo, Al-doped Li7La3Zr2O12-based composite solid electrolyte and performance of all-solid-state batterys[J]. Energy Storage Science and Technology, 2023, 12(5): 1490-1499. DOI: 10.19799/j.cnki.2095-4239.2023.0197.
|
6 |
魏超超, 余创, 吴仲楷, 等. Li3PS4固态电解质的研究进展[J]. 储能科学与技术, 2022, 11(5): 1368-1382. DOI: 10.19799/j.cnki.2095-4239.2021.0513.
|
|
WEI C C, YU C, WU Z K, et al. Research progress of Li3PS4 solid electrolyte[J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. DOI: 10.19799/j.cnki.2095-4239.2021.0513.
|
7 |
吴洁,江小标,杨旸等. NASICON结构Li1+ xAlxTi2- x(PO4)3(0≤x≤0.5)固体电解质研究进展[J].储能科学与技术, 2020, 9(05): 1472-1488.
|
|
WU J, JIANG X B, YANG Y et al. Research progress of ASICON structure Li1+ xAlxTi2- x(PO4)3(0 ≤ x ≤ 0.5) solid electrolyte[J]. Energy Storage Science and Technology, 2020, 9(05): 1472-1488.
|
8 |
KOTOBUKI M, KOISHI M. Influence of precursor calcination temperature on sintering and conductivity of Li1.5Al0.5Ti1.5(PO4)3 ceramics[J]. Journal of Asian Ceramic Societies, 2019, 7(1): 69-74. DOI: 10.1080/21870764.2018.1564166.
|
9 |
铁游夏. 60亿研发投入,固态电池"起飞"[EB/OL]. [2024-06-07]. https://mp.weixin.qq.com/s/HnGsCBo8tcGSgFx0YsZdCA.
|
|
TIE Y X. Six billion R&D investment help the development of solid-state batteries[EB/OL]. [2024-06-07]. https://mp.weixin.qq.com/s/HnGsCBo8tcGSgFx0YsZdCA.
|
10 |
陈凯, 程丽乾. 体型无机全固态锂离子电池研究进展[J]. 硅酸盐学报, 2017, 45(6): 785-792. DOI: 10.14062/j.issn.0454-5648. 2017.06.06.
|
|
CHEN K, CHENG L Q. Development on bulk-type inorganic all-solid-state lithium ion batteries[J]. Journal of the Chinese Ceramic Society, 2017, 45(6): 785-792. DOI: 10.14062/j.issn. 0454-5648.2017.06.06.
|
11 |
李长久. 热喷涂技术应用及研究进展与挑战[J]. 热喷涂技术, 2018, 10(4): 1-22. DOI: 10.3969/j.issn.1674-7127.2018.04.001.
|
|
LI C J. Applications, research progresses and future challenges of thermal spray technology[J]. Thermal Spray Technology, 2018, 10(4): 1-22. DOI: 10.3969/j.issn.1674-7127.2018.04.001.
|
12 |
CHEN R, ZHANG S L, LI C J, et al. Plasma-sprayed high-performance (Bi2O3)0.75(Y2O3)0.25 electrolyte for intermediate-temperature solid oxide fuel cells (IT-SOFCs)[J]. Journal of Thermal Spray Technology, 2021, 30(1): 196-204. DOI: 10.1007/s11666-021-01166-2.
|
13 |
LI C J, OHMORI A. Relationships between the microstructure and properties of thermally sprayed deposits[J]. Journal of Thermal Spray Technology, 2002, 11(3): 365-374. DOI: 10.1361/105996302770348754.
|
14 |
OHMORI A, Li C J, ARATA Y. Influence of plasma spray conditions on the structure of Al2O3 coatings[J]. Transactions Japan Welding Research Institute, 1990, 19(2): 99-110.
|
15 |
CHEN X, KOU C C, ZHANG S L, et al. Effects of powder structure and size on Gd2O3 preferential vaporization during plasma spraying of Gd2Zr2O7[J]. Journal of Thermal Spray Technology, 2020, 29(1): 105-114. DOI: 10.1007/s11666-019-00944-3.
|
16 |
ARBI K, LAZARRAGA M G, BEN HASSEN CHEHIMI D, et al. Lithium mobility in Li1.2Ti1.8R0.2(PO4)3 compounds (R = Al, Ga, Sc, In) as followed by NMR and impedance spectroscopy[J]. Chemistry of Materials, 2004, 16(2): 255-262. DOI: 10.1021/cm030422i.
|
17 |
YAO S W, LI C J, TIAN J J, et al. Conditions and mechanisms for the bonding of a molten ceramic droplet to a substrate after high-speed impact[J]. Acta Materialia, 2016, 119: 9-25. DOI: 10.1016/j.actamat.2016.07.057.
|
18 |
LI C J, LUO X T, YAO S W, et al. The bonding formation during thermal spraying of ceramic coatings: A review[J]. Journal of Thermal Spray Technology, 2022, 31(4): 780-817. DOI: 10.1007/s11666-022-01379-z.
|
19 |
CHEN X, ZHANG S L, LI C X, et al. Optimization of plasma-sprayed lanthanum chromite interconnector through powder design and critical process parameters control[J]. Journal of Thermal Spray Technology, 2020, 29(1): 212-222. DOI: 10.1007/s11666-019-00960-3.
|
20 |
陈楠, 卜晓晨, 熊思琪, 等. 粉末尺寸对等离子喷涂Na3Zr2Si2PO12电解质成分和组织结构的影响[J]. 热喷涂技术, 2023, 15(1): 1-12. DOI: 10.3969/j.issn.1674-7127.2023.01-001.
|
|
CHEN N, BU X C, XIONG S Q, et al. The effect of particle size on composition and microstructure of Na3Zr2Si2PO12 electrolyte deposited by air plasma spraying[J]. Thermal Spray Technology, 2023, 15(1): 1-12. DOI: 10.3969/j.issn.1674-7127.2023.01-001.
|
21 |
TOLGANBEK N, MENTBAYEVA A, UZAKBAIULY B, et al. Li1+ xAlxTi2- x(PO4)3, NASICON-type solid electrolyte fabrication with different methods[J]. Materials Today: Proceedings, 2020, 25: 97-100. DOI: 10.1016/j.matpr.2019.12.279.
|
22 |
SYED A A, DENOIRJEAN A, DENOIRJEAN P, et al. In-flight oxidation of stainless steel particles in plasma spraying[J]. Journal of Thermal Spray Technology, 2005, 14(1): 117-124. DOI: 10.1361/10599630522675.
|
23 |
JOLLEY A G, TAYLOR D D, SCHREIBER N J, et al. Structural investigation of monoclinic-rhombohedral phase transition in Na3Zr2Si2PO12 and doped NASICON[J]. Journal of the American Ceramic Society, 2015, 98(9): 2902-2907. DOI: 10.1111/jace. 13692.
|
24 |
LI Z Y, ZHAO X J. Influence of excess lithium and sintering on the conductivity of Li1.3Al0.3Ti1.7(PO4)3[J]. Functional Materials Letters, 2019, 12(4): 1950047. DOI: 10.1142/S1793604719500474.
|
25 |
MONCHAK M, HUPFER T, SENYSHYN A, et al. Lithium diffusion pathway in Li1.3Al0.3Ti1.7(PO4)3(LATP) superionic conductor[J]. Inorganic Chemistry, 2016, 55(6): 2941-2945. DOI: 10.1021/acs.inorgchem.5b02821.
|