储能科学与技术 ›› 2024, Vol. 13 ›› Issue (5): 1359-1397.doi: 10.19799/j.cnki.2095-4239.2024.0441
陈海生1(), 李泓2, 徐玉杰1, 徐德厚3, 王亮1, 周学志1, 陈满4, 胡东旭1, 阎景旺5, 李先锋5, 胡勇胜2, 安仲勋6, 刘语1, 肖立业7, 蒋凯8, 钟国彬9, 王青松10, 李臻11, 戴兴建1, 张宇鑫1, 俞振华11, 宋振11, 彭煜民4, 马一鸣4, 郭欢1, 王星1, 周鑫1, 胡傲伟1, 张弛1, 相佳媛12, 张浩13, 刘为11, 岳芬11, 张长昆5, 谢飞2, 夏恒恒6, 杨重阳6, 邱清泉7, 艾巍1, 李浩秒8, 刘轩14, 梅文昕10, 李煌10
收稿日期:
2024-05-17
修回日期:
2024-05-22
出版日期:
2024-05-28
发布日期:
2024-05-28
通讯作者:
陈海生
E-mail:chen_hs@iet.cn
作者简介:
陈海生(1977—),男,研究员,博士,研究方向为新型大规模储能技术、传热与储热(冷)特性等,E-mail:chen_hs@iet.cn基金资助:
Haisheng CHEN1(), Hong LI2, Yujie XU1, Dehou XU3, Liang WANG1, Xuezhi ZHOU1, Man CHEN4, Dongxu HU1, Jingwang YAN5, Xianfeng LI5, Yongsheng HU2, Zhongxun AN6, Yu LIU1, Liye XIAO7, Kai JIANG8, Guobin ZHONG9, Qingsong WNAG10, Zhen LI11, Xingjian DAI1, Yuxin ZHANG1, Zhenhua YU11, Zhen SONG11, Yumin PENG4, Yiming MA4, Huan GUO1, Xing WANG1, Xin ZHOU1, Aowei HU1, Chi ZHANG1, Jiayuan XIANG12, Hao ZHANG13, Wei LIU11, Fen YUE11, Changkun ZHANG5, Fei XIE2, Hengheng XIA6, Chongyang YANG6, Qingquan QIU7, Wei AI1, Haomiao LI8, Xuan LIU14, Wenxin MEI10, Huang LI10
Received:
2024-05-17
Revised:
2024-05-22
Online:
2024-05-28
Published:
2024-05-28
Contact:
Haisheng CHEN
E-mail:chen_hs@iet.cn
摘要:
本文对2023年度中国储能技术的研究进展进行了综述。通过对基础研究、关键技术和集成示范三方面的回顾和分析,在综合分析的基础上,总结得出了中国储能技术领域的主要进展,包括抽水蓄能、压缩空气储能、飞轮储能、铅蓄电池、锂离子电池、液流电池、钠离子电池、超级电容器、储能新技术、集成技术和消防安全技术等。结果表明,2023年中国储能技术在基础研究、关键技术和集成示范方面均取得了重要进展,保持了全球基础研究、技术研发和集成示范最为活跃的国家地位,中国在储能领域发表SCI论文数、申请专利数、装机规模继续保持世界第一。展望2024年,中国储能技术有望继续高速发展,同时总体上需要向高质量发展转变。
中图分类号:
陈海生, 李泓, 徐玉杰, 徐德厚, 王亮, 周学志, 陈满, 胡东旭, 阎景旺, 李先锋, 胡勇胜, 安仲勋, 刘语, 肖立业, 蒋凯, 钟国彬, 王青松, 李臻, 戴兴建, 张宇鑫, 俞振华, 宋振, 彭煜民, 马一鸣, 郭欢, 王星, 周鑫, 胡傲伟, 张弛, 相佳媛, 张浩, 刘为, 岳芬, 张长昆, 谢飞, 夏恒恒, 杨重阳, 邱清泉, 艾巍, 李浩秒, 刘轩, 梅文昕, 李煌. 2023年中国储能技术研究进展[J]. 储能科学与技术, 2024, 13(5): 1359-1397.
Haisheng CHEN, Hong LI, Yujie XU, Dehou XU, Liang WANG, Xuezhi ZHOU, Man CHEN, Dongxu HU, Jingwang YAN, Xianfeng LI, Yongsheng HU, Zhongxun AN, Yu LIU, Liye XIAO, Kai JIANG, Guobin ZHONG, Qingsong WNAG, Zhen LI, Xingjian DAI, Yuxin ZHANG, Zhenhua YU, Zhen SONG, Yumin PENG, Yiming MA, Huan GUO, Xing WANG, Xin ZHOU, Aowei HU, Chi ZHANG, Jiayuan XIANG, Hao ZHANG, Wei LIU, Fen YUE, Changkun ZHANG, Fei XIE, Hengheng XIA, Chongyang YANG, Qingquan QIU, Wei AI, Haomiao LI, Xuan LIU, Wenxin MEI, Huang LI. Research progress on energy storage technologies of China in 2023[J]. Energy Storage Science and Technology, 2024, 13(5): 1359-1397.
表1
2023年中国储能关键技术与示范进展"
技术类型 | 关键技术进展 | 集成示范进展 |
---|---|---|
抽水蓄能 | ①大型抽水蓄能电站工程建设技术,首台超大倾角可变径斜井硬岩隧道掘进技术;②海水可变速抽水蓄能整体技术;③抽水蓄能机组四大类核心控制子系统实现了全面国产化等。 | ①国内首台大型300 MW交流励磁变速抽蓄机组发电并网一次成功;②国内在运单机容量最大的双转速变速机组升级改造成功;③世界上海拔最高的大型抽水蓄能电站在四川道孚正式开工建设。 |
压缩空气 储能 | ①首台300 MW级先进压缩空气储能系统宽工况轴流-离心组合式压缩机技术;②首台300 MW膨胀机研制成功;③首台300 MW先进压缩空气储能系统阵列化蓄热装置研制成功,单体容积达8000 m3,蓄热阵列总储热量达8.3 TJ。 | ①张家口国际首套100 MW先进压缩空气储能电站有效参与电网迎峰度夏;②山东肥城300 MW压缩空气储能电站于2023年11月受电成功;③河南信阳等多个压缩空气储能项目启动。 |
储热储冷 | ①多种基于膨胀石墨和不同熔点石蜡的复合相变储热材料完成制备;②以甲基纤维素和生物质材料作孔重整剂的宽温度范围储热材料性能得到优化;③新型环形翅片结构换热器技术;④双层填充床储热系统结构;⑤成功制备适用于冷链运输的新型相变储冷材料和相变凝胶等。 | ①全球首座电热熔盐储能注汽试验站在辽宁建成投产,储热规模达15 MW;②国内首台660 M煤电机组耦合蒸汽熔盐储热调峰项目成功投运;③我国首个液化天然气冷能养殖示范项目在广东正式运行。 |
飞轮储能 | ①火电机组耦合大规模飞轮储能群组协同调频控制技术完成工程验证;②采用矩阵控制技术取得突破;③飞轮储能辅助风电场一次调频的控制技术等。 | ①5 MW/175 kWh飞轮储能项目通过河南电科院一次调频现场试验;②MW级飞轮储能关键技术示范项目在二连浩特成功并网;③飞轮储能和百万千瓦级中间再热火电机组联合调频项目在莱芜投运。 |
铅蓄电池 | ①采用双极技术提高铅炭电池的循环寿命;②吉瓦时级铅炭储能系统集成技术及智能管理技术;③大容量铝基电池技术。 | ①浙江4 MWh微网储能、珠海6 MWh示范项目成功应用铅炭电池储能;②铅炭电池5.04 MW/48.66 MWh用户侧共享储能项目公开招标。 |
锂离子电池 | ①300 Ah以上大容量电芯;②寿命超过12000次电芯电池加工核心技术;③磷酸铁锂电池能量密度提升到190~200 Wh/kg;④效率更高的液冷技术、体积利用率突破72%的电池集成技术等 | ①多个典型锂电储能示范项目顺利并网,如全球单机功率最大20 MW上都电化学储能系统实现满功率运行;②新疆首座电网侧新型储能电站90 MW/180 MWh调峰调频电站并网投运等。 |
液流电池 | ①全钒电解液短流程开发技术;②70 kW级高功率密度全钒液流电池单体电堆开发,体积功率密度由70 kW每立方提高到130 kW每立方;③128 kW全钒液流电堆技术;④面向用户侧100 kWh锌溴液流电池系统的开发;⑤首台250 kW全铁液流储能系统进行3000小时稳定性验证。 | ②100 MW级全钒液流电池储能调峰电站接受电网调令实现毫秒级响应,一次调频功能投入使用;②察布查尔250 MW/1 GWh全钒液流电池储能项目总承包开标。 |
钠离子电池 | ①高容量正负极材料,在圆柱电芯中实现180 Wh/kg能量密度新突破;②循环寿命6000次以上80 Ah和240 Ah方形电芯;③采用聚阴离子正极技术软包电芯实现良好倍率和低温性能。 | ①搭载圆柱钠离子电芯续航里程252 km的钠电电动汽车示范;②全国首套10 MWh钠离子电池电力储能电站系统成功研制。 |
超级电容器 | ①高循环性能碳基材料技术、高导电性复合材料技术、优异比电容和倍率性能材料技术;②新型电极、隔膜制备技术、界面工程优化技术等;③新型水系电解质和有机电解质的制备技术;④“赝电容二极管”技术、新型超级电容二极管技术等。 | ①国内首套超级电容电气化铁路再生制动能量利用装置示范工程在南京成功运行;②配备了电池型超级电容路灯的京雄高速公路投入运营;③200 MW/400 MWh磷酸铁锂电池+20 MW/30 s超级电容混合储能调频电站项目开工建设。 |
储能新技术 | ①液态金属电池:长效服役调控和高效成组与管理技术等;②热泵储电技术:耦合余热技术等;③重力储能技术;④水系电池技术等。 | |
集成技术 | ①H桥级联型电池储能技术;②新型模块化多电平储能系统和控制策略;③基于数据驱动的电池寿命预测技术等。 | ①佛山300 MW/600 MWh储能电站项目实现多种锂电池组合的“一站集成”;②内蒙古百万千瓦级风电基地配储一期配套安装电池容量40 MWh为全球电化学储能单机功率最大的储能系统。 |
消防安全 技术 | ①采用蜂窝、仿生液冷板结构,使用低沸点介电制冷剂的高效散热技术;②基于光纤传感的电池热失控早期预警技术;③高耐压性能隔热材料、采用全氟己酮等热失控抑制和灭火技术。 | ①全球首个浸没式液冷储能电站南网梅州70 MW/140 MWh电站正式投运,5.2 MWh电池舱运行温升不超过5℃,不同电池温差不超过2 ℃;②从单一灭火系统转变采用复合消费系统,如广西200 MW/400 MWh采用全氟己酮和水喷淋技术。 |
1 | 国家发展改革委 国家能源局关于印发«"十四五"新型储能发展实施方案»的通知[EB/OL]. [2023-08-15]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202203/t20220321_1319772.html. |
2 | 国家能源局关于促进新型储能并网和调度运用的通知[EB/OL]. [2023-08-15]. http://zfxxgk.nea.gov.cn/2024-04/02/c_1310771072.htm. |
3 | 陈海生, 李泓, 马文涛, 等. 2021年中国储能技术研究进展[J]. 储能科学与技术, 2022, 11(3): 1052-1076. |
CHEN H S, LI H, MA W T, et al. Research progress of energy storage technology in China in 2021[J]. Energy Storage Science and Technology, 2022, 11(3): 1052-1076. | |
4 | 陈海生, 李泓, 徐玉杰, 等. 2022年中国储能技术研究进展[J]. 储能科学与技术, 2023, 12(5): 1516-1552. |
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2022[J]. Energy Storage Science and Technology, 2023, 12(5): 1516-1552. | |
5 | 杨小龙, 王焕茂, 林恺, 等. 抽水蓄能机组水轮机工况启动过程内部流场分析[J]. 大电机技术, 2024(1): 1-7. |
YANG X L, WANG H M, LIN K, et al. Analysis of internal flow field during the start-up of hydraulic turbine of pumped storage unit[J]. Large Electric Machine and Hydraulic Turbine, 2024(1): 1-7. | |
6 | SHEN J W, PEI J, WANG W J, et al. Instability characteristics regarding the saddle-shaped region in a reversible mixed-flow pump applied to the low-head pumped storage[J]. Journal of Energy Storage, 2023, 63: 107035. |
7 | 管子武, 冷在军, 陈舰, 等. 高水头抽水蓄能机组减振降噪评估及工程实践[J]. 水电与抽水蓄能, 2023, 9(4): 20-26. |
GUAN Z W, LENG Z J, CHEN J, et al. Vibration and noise reduction of a high head pump turbine: Prediction and practice[J]. Hydropower and Pumped Storage, 2023, 9(4): 20-26. | |
8 | HU Z A, CHENG Y G, LIU D M, et al. Broadening the operating range of pump-turbine to deep-part load by runner optimization[J]. Renewable Energy, 2023, 207: 73-88. |
9 | FU X L, LI D Y, WANG H J, et al. Cavitation mechanism and effect on pump power-trip transient process of a pumped-storage unit[J]. Journal of Energy Storage, 2023, 66: 107405. |
10 | GUO J X, ZHOU D Q, CHEN H X, et al. Flow-induced vibration analysis in a pump-turbine runner under transient operating conditions[J]. Engineering Applications of Computational Fluid Mechanics, 2023, 17(1): doi: 10.1080/19942060.2023.2266662. |
11 | LIU K, LIN Y F, JI B, et al. Revealing the pressure pulsations that can cause water column separation in pump-turbine[J]. Journal of Fluids and Structures, 2023, 123: 103989. |
12 | ZHAO Y Q, LI D Y, CHANG H, et al. Suppression effect of bionic guide vanes with different parameters on the hump characteristics of pump-turbines based on entropy production theory[J]. Energy, 2023, 283: 128650. |
13 | JIN F Y, WANG H M, LUO Y Y, et al. Visualization research of energy dissipation in a pump turbine unit during turbine mode's starting up[J]. Renewable Energy, 2023, 217: 119172. |
14 | LEI L W, CHEN D Y, MA C, et al. Optimization and decision making of guide vane closing law for pumped storage hydropower system to improve adaptability under complex conditions[J]. Journal of Energy Storage, 2023, 73: 109038. |
15 | SUN L, MA Y M, XIE T, et al. A review of hydraulic and mechanical vibration characteristics of pumped storage units[C]//2023 6th International Conference on Power and Energy Applications (ICPEA). Weihai, China. IEEE, 2023: 50-58. |
16 | ZHENG Y, LIU W S, ZHOU X, et al. Discrete impedance method for the oscillation analysis of pumped-storage power plants[J]. Energy Reports, 2023, 9: 3563-3575. |
17 | GUO W C, WU F L. Stability behavior of load adjustment and primary frequency control of pumped storage power plant with upstream and downstream surge tanks[J]. Journal of Energy Storage, 2023, 60: 106626. |
18 | 衣传宝, 杨黎明, 罗艳, 等. 基于抽水蓄能的新型电力系统惯量优化控制方法[J]. 可再生能源, 2023, 41(4): 530-537. |
YI C B, YANG L M, LUO Y, et al. Inertia optimization control method of new power system based on pumped storage[J]. Renewable Energy Resources, 2023, 41(4): 530-537. | |
19 | 张慧中, 崔学深, 桂中华, 等. 双馈抽水蓄能机组无功调节极限能力研究[J]. 大电机技术, 2023(2): 1-7, 29. |
ZHANG H Z, CUI X S, GUI Z H, et al. Research on limit capacity of reactive power regulation of doubly-fed pumped storage unit[J]. Large Electric Machine and Hydraulic Turbine, 2023(2): 1-7, 29. | |
20 | 庄凯勋, 孙建军, 丁理杰, 等. 提升双馈变速抽水蓄能机组频率响应特性的控制策略[J]. 电工技术学报, 2023, 38(23): 6292-6304. |
ZHUANG K X, SUN J J, DING L J, et al. A control strategy with improved frequency response characteristics of variable speed DFIM pumped storage[J]. Transactions of China Electrotechnical Society, 2023, 38(23): 6292-6304. | |
21 | 井浩然, 李佳, 赵红生, 等. 双馈变速抽水蓄能全工况转换过程建模与仿真[J]. 电力建设, 2023, 44(10): 41-50. |
JING H R, LI J, ZHAO H S, et al. Modeling and simulation of operating condition conversion of doubly-fed variable speed pumped storage[J]. Electric Power Construction, 2023, 44(10): 41-50. | |
22 | 张良, 郑丽冬, 冷祥彪, 等. 基于灰狼算法的风-光-抽水蓄能联合系统多目标优化策略研究[J/OL]. 上海交通大学学报: 1-24[2023-07-26]. https://doi.org/10.16183/j.cnki.jsjtu.2023.049. |
23 | 魏震波, 姚怡欣, 张雯雯, 等. 基于完备集合经验模态分解的含抽蓄微电网混合储能容量优化配置[J]. 储能科学与技术, 2023, 12(11): 3414-3424. |
WEI Z B, YAO Y X, ZHANG W W, et al. Capacity-based optimal configuration of microgrid hybrid energy-storage system with pumped storage based on CEEMDAN[J]. Energy Storage Science and Technology, 2023, 12(11): 3414-3424. | |
24 | TAN Q F, NIE Z, WEN X, et al. Complementary scheduling rules for hybrid pumped storage hydropower-photovoltaic power system reconstructing from conventional cascade hydropower stations[J]. Applied Energy, 2024, 355: 122250. |
25 | 罗彬, 陈永灿, 苗树敏, 等. 融合改造的混合式抽水蓄能与风电联合运行短期调度模型[J]. 水利学报, 2023, 54(8): 955-966. |
LUO B, CHEN Y C, MIAO S M, et al. A joint short-term operation model for wind power and hybrid pumped-storage hydropower plant[J]. Journal of Hydraulic Engineering, 2023, 54(8): 955-966. | |
26 | 罗胤, 靳国云, 赵俊杰, 等. 抽蓄-火电联合运营的经济效益分析[J]. 浙江电力, 2023, 42(9): 61-68. |
LUO Y, JIN G Y, ZHAO J J, et al. Economic benefit analysis of the collaboration between a pumped storage power plant and a thermal power plant[J]. Zhejiang Electric Power, 2023, 42(9): 61-68. | |
27 | 王毅, 王慷, 王小军, 等. 抽水蓄能机组全生命周期成本建模、估算与系统开发[J]. 电力信息与通信技术, 2023, 21(1): 71-77. |
WANG Y, WANG K, WANG X J, et al. Life cycle cost modeling, estimation and system development of pumped storage units[J]. Electric Power Information and Communication Technology, 2023, 21(1): 71-77. | |
28 | 倪晋兵, 张云飞, 施浩波, 等. 基于时序生产模拟的抽水蓄能促进新能源消纳作用量化研究[J]. 电网技术, 2023, 47(7): 2799-2809. |
NI J B, ZHANG Y F, SHI H B, et al. Pumped storage quantification in promoting new energy consumption based on time series production simulation[J]. Power System Technology, 2023, 47(7): 2799-2809. | |
29 | 黄莉, 赵江艳, 周清平, 等. 抽水蓄能电站容量价格研究——以贵州省为例[J]. 建筑经济, 2023, 44(S1): 120-123. |
HUANG L, ZHAO J Y, ZHOU Q P, et al. Study on capacity price of pumped storage power station—Taking Guizhou Province as an example[J]. Construction Economy, 2023, 44(S1): 120-123. | |
30 | CHEN Z, XU D L, GENG L, et al. Research on utility calculation method of pumped storage participating in peak-shaving market[J]. Journal of Physics: Conference Series, 2023, 2479(1): 012060. |
31 | 谢道清, 张茂, 刘思佳, 等. 电力市场不同发展阶段下抽水蓄能电站电价机制研究[J]. 电力需求侧管理, 2023, 25(4): 99-104. |
XIE D Q, ZHANG M, LIU S J, et al. Electricity price mechanism of pumped storage power station under different development stages of electricity market[J]. Power Demand Side Management, 2023, 25(4): 99-104. | |
32 | 王进, 张粒子, 赵志芳, 等. 抽水蓄能电站市场化运行机制和日前市场出清模型[J]. 电力系统自动化, 2023, 47(12): 145-153. |
WANG J, ZHANG L Z, ZHAO Z F, et al. Marketization operation mechanism and clearing model of day-ahead market for pumped storage stations[J]. Automation of Electric Power Systems, 2023, 47(12): 145-153. | |
33 | 林毅, 林威, 吴威, 等. 电化学储能和抽水蓄能电站参与多市场联合运行价值分析[J]. 中国电力, 2023, 56(7): 175-185. |
LIN Y, LIN W, WU W, et al. Analysis on operation value of electrochemical energy storage and pumped storage participating in a joint market[J]. Electric Power, 2023, 56(7): 175-185. | |
34 | ZHANG H N, DONG C, LIANG C, et al. Simulation analysis of profit and loss of pumped storage units participating in spot market[C]//2023 3rd Power System and Green Energy Conference (PSGEC). Shanghai, China. IEEE, 2023: 628-632. |
35 | LI S, CAO Z Z, HU K Q, et al. Performance assessment for primary frequency regulation of variable-speed pumped storage plant in isolated power systems[J]. Energies, 2023, 16(3): 1238. |
36 | HUANG Y F, YANG W J, ZHAO Z G, et al. Active power fluctuations and control in hydraulic disturbance of variable speed pumped storage plants[J]. Journal of Energy Storage, 2023, 60: 106666. |
37 | XU Z H, DENG C H, YANG Q L. A primary frequency control strategy for variable-speed pumped-storage plant in generating mode based on adaptive model predictive control[J]. Electric Power Systems Research, 2023, 221: 109356. |
38 | LI Y, LI O T, WU F, et al. Multi-objective capacity optimization of grid-connected wind-pumped hydro storage hybrid systems considering variable-speed operation[J]. Energies, 2023, 16(24): 8113. |
39 | 程其云, 何鑫, 冷祥彪, 等. 基于可变速抽水蓄能的风—光—火——抽蓄的优化调度[J]. 水电与抽水蓄能, 2023, 9(4): 109-113. |
CHENG Q Y, HE X, LENG X B, et al. Optimal dispatch of wind-solar-fired-pumped storage based on variable speed pumped storage[J]. Hydropower and Pumped Storage, 2023, 9(4): 109-113. | |
40 | 朱军辉. 海水抽水蓄能与海上光伏一体化发电技术及经济性分析[J]. 南方能源建设, 2023, 10(2): 11-17. |
ZHU J H. Analysis of power generation technology and economy on the integration of seawater pump & storage and offshore PV[J]. Southern Energy Construction, 2023, 10(2): 11-17. | |
41 | YIN X X, ZHAO Z G, YANG W J. Optimizing cleaner productions of sustainable energies: A co-design framework for complementary operations of offshore wind and pumped hydro-storages[J]. Journal of Cleaner Production, 2023, 396: 135832. |
42 | ZHOU X, ZHOU Y J, XU X D, et al. Hydraulic characteristics analysis of double-bend roadway of abandoned mine pumped storage[J]. Sustainability, 2023, 15(5): 3958. |
43 | SUN Z B, ZHAO Y X, REN J D. Regional development potential of underground pumped storage power station using abandoned coal mines: A case study of the Yellow River Basin, China[J]. Journal of Energy Storage, 2024, 77: 109992. |
44 | GE G Q, WANG H R, LI R X, et al. A reliable operation strategy on the compressed-air-regulates-pressure underground pumped storage system and its thermo-economic investigation[J]. Journal of Energy Storage, 2023, 74: 109295. |
45 | LIU T, YU J S, LIN K, et al. Analysis and research on generator design technology of variable speed pumping and storage units at home and abroad[C]//2023 8th International Conference on Power and Renewable Energy (ICPRE). Shanghai, China. IEEE, 2023: 1058-1061. |
46 | GUO H, XU Y J, KANG H Y, et al. From theory to practice: Evaluating the thermodynamic design landscape of compressed air energy storage systems[J]. Applied Energy, 2023, 352: 121858. |
47 | LI R X, TAO R, YAO E R, et al. Comprehensive thermo-exploration of a near-isothermal compressed air energy storage system with a pre-compressing process and heat pump discharging[J]. Energy, 2023, 268: 126609. |
48 | 杨大慧, 文贤馗, 钟晶亮, 等. AA-CAES系统释能过程安全减出力控制仿真分析[J]. 太阳能学报, 2023, 44(4): 283-289. |
49 | GAO Z Y, ZHANG X J, LI X Y, et al. Thermodynamic analysis of isothermal compressed air energy storage system with droplets injection[J]. Energy, 2023, 284: 129304. |
50 | 肖旻逾, 杨承, 肖润珂, 等. 非稳定电源驱动的恒压绝热压缩空气储能系统设计[J]. 中国电机工程学报, 2023, 43(6): 2168-2178. |
51 | 尹斌鑫, 苗世洪, 李姚旺, 等. 集中-分布式混合压缩空气储能电站优化规划策略[J]. 电力系统自动化, 2023, 47(5): 53-64. |
52 | 潘文, 令兰宁, 李瑞雄, 等. 绝热-近等温压缩空气耦合储能过程热压匹配规律[J]. 储能科学与技术, 2023, 12(11): 3425-3434. |
53 | LI Z L, LU X G, WU Y F, et al. Thermodynamic investigation of the secondary flow inside centrifugal compressor for compressed air energy storage based on local dissipation[J]. Journal of Energy Storage, 2023, 74: 109325. |
54 | 刘小明, 王戈. 齿轮组装式压缩机在非补燃式压缩空气储能项目中的应用[J]. 中国科技信息, 2022(23): 91-92. |
LIU X M, WANG G. Application of gear assembled compressor in non-afterburning compressed air energy storage project[J]. China Science and Technology Information, 2022(23): 91-92. | |
55 | AN G Y, KANG J C, ZOU Y H, et al. Investigation of the unsteady flow in a transonic axial compressor adopted in the compressed air energy storage system[J]. Journal of Energy Storage, 2023, 63: 106928. |
56 | ZHANG G J, YANG Y F, CHEN J H, et al. Numerical study of heterogeneous condensation in the de Laval nozzle to guide the compressor performance optimization in a compressed air energy storage system[J]. Applied Energy, 2024, 356: 122361. |
57 | MA L R, ZHANG X L, ZHANG Z, et al. Application of the multi-stage centrifugal compressor 1D loss model in the adiabatic compressed air energy storage[J]. Energy Conversion and Management, 2023, 283: 116908. |
58 | LI P F, ZUO Z T, LI J X, et al. Characteristics of inlet guide vane adjustment of multi-stage axial compressor in compressed air energy storage system[J]. Journal of Energy Storage, 2023, 72: 108342. |
59 | 杨小亮, 孙健, 董辉, 等. 微小型压缩空气储能系统用涡旋压缩机流动特性研究[J]. 机床与液压, 2024, 52(1): 145-151. |
60 | XIONG J, ZHU Y L, WANG X, et al. Blade solidity optimization of axial turbine in compressed air energy storage system[J]. Journal of Energy Storage, 2023, 72: 108598. |
61 | XIAO F, CHEN W, ZHANG B, et al. A novel constant power operation mode of constant volume expansion process for AA-CAES: Regulation strategy, dynamic simulation, and comparison[J]. Energy, 2023, 284: 128594. |
62 | GUAN Y, LI W, ZHU Y L, et al. Aerodynamic performance and flow characteristics of a compressed air energy storage axial turbine with nozzle governing[J]. Journal of Energy Storage, 2023, 63: 106967. |
63 | GUAN Y, WANG X, ZHU Y L, et al. Optimal design and research for nozzle governing turbine of compressed air energy storage system[J]. Journal of Energy Storage, 2024, 77: 109683. |
64 | 陈辉, 李文, 盛勇, 等. CAES释能过程多工况动态仿真及效率分析[J]. 动力工程学报, 2023, 43(7): 869-876, 892. |
65 | SUN J, PENG B, ZHU B G, et al. Research on the performance characteristics of an oil-free scroll expander that is applied to a micro-scale compressed air energy storage system[J]. Journal of Energy Storage, 2023, 63: 106896. |
66 | 余海鹏, 祝海义, 赫广迅, 等. 储罐压缩空气储能全周期满负荷运行膨胀透平系统研究[J]. 汽轮机技术, 2022, 64(3): 203-206. |
67 | 王丹, 张甜甜, 吴嘉禾, 等. 大规模压缩空气储能系统发电方式与运行控制分析与构想[J]. 电力系统自动化, 2019, 43(24): 13-22. |
68 | 赫广迅, 余海鹏, 孙嘉, 等. 压缩空气储能透平滑压运行参数优化研究[J]. 汽轮机技术, 2023, 65(1): 77-80. |
69 | QU Y L, WANG L, LIN X P, et al. Mixed convective heat transfer characteristics and mechanisms in structured packed beds[J]. Particuology, 2023, 82: 122-133. |
70 | LIN L, WANG L, BAI Y K, et al. Heat transfer characteristics of the innovative spray-type packed bed thermal energy storage: An experimental study[J]. Journal of Energy Storage, 2023, 73: 108573. |
71 | FAN X Y, GUO L N, JI W, et al. Liquid air energy storage system based on fluidized bed heat transfer[J]. Renewable Energy, 2023, 215: 118928. |
72 | QU Y L, LIN X P, WANG L, et al. Cryogenic energy storage characteristics in cascaded packed beds[J]. Journal of Energy Storage, 2023, 73: 108867. |
73 | CHEN H, CHENG W L, NIAN Y L. Liquid-gas heat transfer characteristics of near isothermal compressed air energy storage based on Spray Injection[J]. International Journal of Heat and Mass Transfer, 2023, 215: 124530. |
74 | AI W, WANG L, LIN X P, et al. Mathematical and thermo-economic analysis of thermal insulation for thermal energy storage applications[J]. Renewable Energy, 2023, 213: 233-245. |
75 | 刘云汉, 王亮, 张双, 等. 水合盐/膨胀石墨复合相变材料的热物性及循环稳定性研究[J]. 储能科学与技术, 2023, 12(12): 3627-3634. |
76 | HAN X Y, GE Z W, LIN X P, et al. Thermochemical energy storage performances of Co3O4-based honeycombs with multi-scale composite pores[J]. Journal of Energy Storage, 2024, 82: 110394. |
77 | GUO D Z, ZHOU X Z, XU Y J, et al. Structure optimization and operation characteristics of metal gas storage device based on compressed air energy storage system[J]. Journal of Energy Storage, 2023, 72: 108260. |
78 | LIU X L, ZHONG L S, WANG J S. The investigation on a hot dry rock compressed air energy storage system[J]. Energy Conversion and Management, 2023, 291: 117274. |
79 | SUN D M, CHU Z B, CHEN W Y, et al. Comparison of the characteristics of compressed air energy storage in dome-shaped and horizontal aquifers based on the Pittsfield aquifer field test[J]. Applied Energy, 2023, 348: 121465. |
80 | MIAO X X, ZHANG K, WANG J G, et al. Coupled thermodynamic and thermomechanical modelling for compressed air energy storage in underground mine tunnels[J]. International Journal of Rock Mechanics and Mining Sciences, 2024, 176: 105717. |
81 | MA Y, RAO Q H, HUANG D Y, et al. Gas-mechanical coupled crack initiation analysis for local air-leakage of compressed air energy storage (CAES) cavern with consideration of seepage effect[J]. Theoretical and Applied Fracture Mechanics, 2023, 125: 103827. |
82 | 于欣平. 废弃矿井压缩空气储能硐室变形渗漏机制研究[D]. 济南: 山东大学, 2023. |
YU X P. Research on the deformation and leakage mechanism of compressed air energy storage chamber in abandoned mines[D]. Jinan: Shandong University, 2023. | |
83 | QIN S K, XIA C C, ZHOU S W. Air tightness of compressed air storage energy Caverns with polymer sealing layer subjected to various air pressures[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(8): 2105-2116. |
84 | LIU X Y, YANG J P, YANG C H, et al. Numerical simulation on cavern support of compressed air energy storage(CAES)considering thermo-mechanical coupling effect[J]. Energy, 2023, 282: 128916. |
85 | LI Y, LIU Y N, LI Y, et al. Potential influences of leakage through a high permeability path on shallow aquifers in compressed air energy storage in aquifers[J]. Renewable Energy, 2023, 209: 661-676. |
86 | LIU W, LI Q H, YANG C H, et al. The role of underground salt Caverns for large-scale energy storage: A review and prospects[J]. Energy Storage Materials, 2023, 63: 103045. |
87 | 赵同彬, 刘淑敏, 马洪岭, 等. 废弃煤矿压缩空气储能研究现状与发展趋势[J].煤炭科学技术, 2023, 51(10): 163-176. |
88 | GUO H, WANG X L, HUANG L J, et al. Off-design characteristics of a novel integrated system of coal-fired cogeneration unit and compressed air energy storage[J]. Journal of Energy Storage, 2023, 69: 107944. |
89 | WANG C Y, SONG J W, ZHENG W, et al. Integration of compressed air energy storage into combined heat and power plants: A solution to flexibility and economy[J]. Energy Conversion and Management, 2023, 290: 117215. |
90 | CUI F F, AN D, TENG S Y, et al. Cogeneration systems of solar energy integrated with compressed air energy storage systems: A comparative study of various energy recovery strategies[J]. Case Studies in Thermal Engineering, 2023, 51: 103521. |
91 | ZHOU Y F, DUAN L Q, DING X Q, et al. Economic feasibility assessment of a solar aided liquid air energy storage system with different operation strategies[J]. Journal of Energy Storage, 2023, 72: 108812. |
92 | ZHANG Q W, GE M S, WU P T, et al. Solar photovoltaic coupled with compressed air energy storage: A novel method for energy saving and high quality sprinkler irrigation[J]. Agricultural Water Management, 2023, 288: 108496. |
93 | REN S Y, GUNDERSEN T, LIU Z X, et al. Performance improvement of liquid air energy storage: Introducing Stirling engine and solar energy[J]. Energy Conversion and Management, 2023, 296: 117666. |
94 | LI F Y, YU Y P, SHU Y, et al. Study on characteristics of photovoltaic and photothermal coupling compressed air energy storage system[J]. Process Safety and Environmental Protection, 2023, 178: 147-155. |
95 | FU H L, HUA Q S, SHI J, et al. Photothermal-assisted scheme design and thermodynamic analysis of advanced adiabatic compressed air energy storage system[J]. Renewable Energy, 2023, 215: 118927. |
96 | YU J, HU J Q, YAN P Y, et al. Optimizing sustainable energy solutions: A comprehensive analysis of geothermal-powered compressed air energy storage system[J]. Energy, 2023, 285: 129426. |
97 | LI J J, LI H, CAO Z, et al. Study of the independent cooling performance of adiabatic compressed air energy storage system[J]. International Journal of Refrigeration, 2023, 152: 155-170. |
98 | LU Y L, CHEN X, XU J X, et al. Techno-economic analysis of an advanced polygeneration liquid air energy storage system coupled with LNG cold energy, solar energy, and hydrate based desalination[J]. Energy Conversion and Management, 2023, 297: 117726. |
99 | CHENG Z W, TONG Z M, TONG S G, et al. CAES-SC hybrid energy storage: Dynamic characteristics and control via discharge process[J]. Journal of Energy Storage, 2023, 72: 108561. |
100 | ZENG Z H, HUANG D Y, ZHANG L, et al. An innovative modified calcium chloride hexahydrate–based composite phase change material for thermal energy storage and indoor temperature regulation[J]. Advanced Composites and Hybrid Materials, 2023, 6(2): 80. |
101 | 盛楠, 刘韧婕, 卢家辉, 等. 氧化铝包覆金属锡相变微胶囊的制备及相变性能研究[J]. 工程热物理学报, 2023, 44(10): 2663-2672. |
SHENG N, LIU R J, LU J H, et al. Preparation and phase change properties of metallic tin phase change microcapsules coated by Al2O3[J]. Journal of Engineering Thermophysics, 2023, 44(10): 2663-2672. | |
102 | XU S X, DU M Y, YU X F, et al. Preparation of photothermal conversion and energy storage microcapsules based on Pickering emulsions with poly (p-phenylenediamine) as stabilizer and photothermal materials[J]. Journal of Energy Storage, 2023, 59: 106564. |
103 | 胡定华, 林肯, 李强, 等. 固液相变沉降特性对储热性能影响的实验研究[J]. 工程热物理学报, 2023, 44(10): 2861-2865. |
HU D H, LIN K, LI Q, et al. Experimental study on the influence of solid-liquid phase change characteristics on heat storage performance[J]. Journal of Engineering Thermophysics, 2023, 44(10): 2861-2865. | |
104 | LIU Y H, WANG L, PENG L, et al. Thermal properties and cyclic stability of sodium acetate trihydrate composites containing expanded graphite of different sizes[J]. Solar Energy Materials and Solar Cells, 2024, 266: 112698. |
105 | HAN X Y, WANG L, GE Z W, et al. Al- and Cr-doped Co3O4/CoO redox materials for thermochemical energy storage in concentrated solar power plants[J]. Solar Energy Materials and Solar Cells, 2023, 260: 112475. |
106 | ZHENG Y Y, GE Z W, SUN H C, et al. The role of oxygen vacancy in CaO-Ca12Al14O33 materials derived from hydrocalumite for enhanced CO2 capture cyclic performance[J]. Chemical Engineering Journal, 2024, 481: 147955. |
107 | JING D L, XING M B, ZHANG Z T, et al. Solidification/melting enhancement in ice thermal energy storage by synergistic effect of metal foam and carbon nanotube under magnetic field[J]. Applied Thermal Engineering, 2024, 236: 121472. |
108 | LI X X, CUI W, MA T, et al. Lattice Boltzmann simulation of coupled depressurization and thermal decomposition of carbon dioxide hydrate for cold thermal energy storage[J]. Energy, 2023, 278: 127984. |
109 | WU Y H, LUO M J, CHEN S, et al. Numerical simulation study of the effect of mechanical vibration on heat transfer in a six-fin latent heat thermal energy storage unit[J]. International Journal of Heat and Mass Transfer, 2023, 207: 123996. |
110 | WANG L M, LEI Y G, DU B C, et al. Performance enhancement of a horizontal latent thermal energy storage unit with elliptical fins[J]. Applied Thermal Engineering, 2023, 225: 120191. |
111 | WANG Z Y, DIAO Y H, ZHAO Y H, et al. Experimental and numerical studies of thermal transport in a latent heat storage unit with a plate fin and a flat heat pipe[J]. Energy, 2023, 275: 127464. |
112 | QU Y L, LIN X P, WANG L, et al. Cryogenic energy storage characteristics in cascaded packed beds[J]. Journal of Energy Storage, 2023, 73: 108867. |
113 | HUANG K L, WEI J X, FENG G H, et al. Increasing ice production speed of a seasonal ice storage device based on experimental test and numerical simulation[J]. Journal of Energy Storage, 2023, 72: 108281. |
114 | XU B W, LU S L, ZHENG J H. Thermodynamic optimization of cascaded PCMs charge process based on entransy dissipation extreme principle[J]. Sustainable Cities and Society, 2023, 93: 104521. |
115 | LIANG Y, YANG H B, WANG H L, et al. Enhancing energy efficiency of air conditioning system through optimization of PCM-based cold energy storage tank: A data center case study[J]. Energy, 2024, 286: 129641. |
116 | CHEN C Q, DIAO Y H, ZHAO Y H, et al. Thermal performance of cold thermal energy storage system with fin and fin-foam structures[J]. Applied Thermal Engineering, 2023, 228: 120459. |
117 | CHEN C Q, DIAO Y H, ZHAO Y H, et al. Melting performance of a cold energy storage device filled with metal foam-composite phase-change materials[J]. Journal of Energy Storage, 2023, 60: 106567. |
118 | 范肖雅, 周黎旸, 陈琪, 等. 水平直管内乙醇浆体流动压降数值模拟和实验研究[J]. 制冷学报, 2023, 44(5): 145-149, 166. |
FAN X Y, ZHOU L Y, CHEN Q, et al. Numerical simulation and experimental study of pressure drop of ethanol slurry flow in horizontal straight pipe[J]. Journal of Refrigeration, 2023, 44(5): 145-149, 166. | |
119 | 王泽峥, 曲文浩, 王亚军, 等. 大容量复合材料飞轮转子仿真与应力分析[J]. 储能科学与技术, 2023, 12(3): 669-675. |
WANG Z Z, QU W H, WANG Y J, et al. Simulation and stress analysis of large capacity composite flywheel rotor[J]. Energy Storage Science and Technology, 2023, 12(3): 669-675. | |
120 | HU D X, DAI X J, LI W, et al. A review of flywheel energy storage rotor materials and structures[J]. Journal of Energy Storage, 2023, 74: 109076. |
121 | 胡东旭, 朱少飞, 魏晓钢, 等. MW级大储能量飞轮轴系结构力学及动力学研究[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2023.0925. |
122 | 焦渊远, 王艺斐, 戴兴建, 等. 飞轮储能系统电机转子散热研究进展[J]. 储能科学与技术, 2023, 12(10): 3131-3144. |
JIAO Y Y, WANG Y F, DAI X J, et al. Overview of the motor-generator rotor cooling system in a flywheel energy storage system[J]. Energy Storage Science and Technology, 2023, 12(10): 3131-3144. | |
123 | 王成, 白国长, 张宇. 飞轮储能用永磁同步电机温度场分析[J]. 重庆理工大学学报(自然科学), 2024, 38(2): 148-153. |
WANG C, BAI G C, ZHANG Y. Temperature field analysis of permanent magnet synchronous motor for flywheel energy storage[J]. Journal of Chongqing University of Technology (Natural Science), 2024, 38(2): 148-153. | |
124 | 菅春, 孟克其劳, 周冉, 等. 飞轮储能用永磁同步电机气隙磁通密度波形优化[J]. 中国科技论文, 2023, 18(8): 927-934. |
JIAN C, MENG K, ZHOU R, et al. Optimization of air gap flux density waveform of permanent magnet synchronous motor for flywheel energy storage[J]. China Sciencepaper, 2023, 18(8): 927-934. | |
125 | 魏乐, 李承霖, 房方, 等. 小样本下基于改进麻雀算法优化卷积神经网络的飞轮储能系统损耗[J/OL]. 电网技术: 1-9[2024-03-20]. https://doi.org/10.13335/j.1000-3673.pst.2023.2001. |
126 | LEI M Z, MENG K, FENG H N, et al. Flywheel energy storage controlled by model predictive control to achieve smooth short-term high-frequency wind power[J]. Journal of Energy Storage, 2023, 63: 106949. |
127 | XIAO F, YANG Z G, WEI B. Distributed fixed-time cooperative control for flywheel energy storage systems with state-of-energy constraints[J]. Energy, 2024, 293: 130593. |
128 | 李晓峰, 涂伟超, 马丽, 等. 功率型储能技术在新能源场站一次调频中的作用及应用研究[J]. 太阳能, 2024(2): 76-85. |
LI X F, TU W C, MA L, et al. Research on role and application of power type energy storage technology in primary frequency modulation of new energy stations[J]. Solar Energy, 2024(2): 76-85. | |
129 | YIN J, LIN H B, SHI J, et al. Lead-carbon batteries toward future energy storage: From mechanism and materials to applications[J]. Electrochemical Energy Reviews, 2022, 5(3): 2. |
130 | TAO D W, LIU X, LI Z M, et al. Lead single atoms anchored on reduced graphene oxide as multifunctional additive for lead-carbon battery[J]. Chemical Engineering Journal, 2023, 461: 141992. |
131 | TAO D W, LIU X, HUANG S M, et al. Suppressing hydrogen evolution and eliminating sulfation in lead-carbon batteries via potential-matching g-C3N4@rGO nanosheets[J]. Chemical Engineering Journal, 2023, 474: 145880. |
132 | ZHANG M, SONG H S, MA Y J, et al. Preparation of NH4Cl-modified carbon materials via high-temperature calcination and their application in the negative electrode of lead-carbon batteries[J]. Molecules, 2023, 28(14): 5618. |
133 | TU J, HE P Q, HE Y P, et al. Achieving high performances of lead-carbon battery with MnO2 positive additive[J]. Journal of Energy Storage, 2023, 72: 108752. |
134 | REN L, ZHU W, LI S T, et al. Bifunctional additive: Lead dioxide nanoparticle-doped graphene oxide composites for the preparation and performance study of positive electrodes in lead-carbon batteries[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 676: 132303. |
135 | ZHANG R, WANG C Y, ZOU P C, et al. Long-life lithium-ion batteries realized by low-Ni, Co-free cathode chemistry[J]. Nature Energy, 2023, 8(7): 695-702. |
136 | FU A, ZHANG Z F, LIN J D, et al. Highly stable operation of LiCoO2 at cut-off ≥ 4.6V enabled by synergistic structural and interfacial manipulation[J]. Energy Storage Materials, 2022, 46: 406-416. |
137 | XU Z, GUO X Z, SONG W J, et al. Sulfur-assisted surface modification of lithium-rich manganese-based oxide toward high anionic redox reversibility[J]. Advanced Materials, 2024, 36(1): e2303612. |
138 | CHEN X L, YANG F Z, ZHANG C, et al. Sustainable prelithiation strategy: Enhancing energy density and lifespan with ultrathin Li-Mg-Al alloy foil[J]. Advanced Energy Materials, 2024: 2304097. |
139 | DRESSLER R A, DAHN J R. Optimization of Si-containing and SiO based anodes with single-walled carbon nanotubes for high energy density applications[J]. Journal of the Electrochemical Society, 2024, 171(3): 030520. |
140 | YANG Y Z, YANG Z, LI Z L, et al. Rational electrolyte design for interfacial chemistry modulation to enable long-term cycling Si anode[J]. Advanced Energy Materials, 2023, 13(41): 2302068. |
141 | CUI Z H, ZOU F, CELIO H, ARUMUGAM M. Paving pathways toward long-life graphite/LiNi0.5Mn1.5O4 full cells: Electrochemical and interphasial points of view[J]. Advanced Functional Materials, 2022, 32: 2203779. |
142 | QIN S Y, YU Y N, ZHANG J Y, et al. Separator-free in situ dual-curing solid polymer electrolytes with enhanced interfacial contact for achieving ultrastable lithium-metal batteries[J]. Advanced Energy Materials, 2023, 13(34): 2301470. |
143 | SONG Z Y, WANG T R, YANG H, et al. Promoting high-voltage stability through local lattice distortion of halide solid electrolytes[J]. Nature Communications, 2024, 15: 1481. |
144 | ZHU J G, XU W T, KNAPP M, et al. A method to prolong lithium-ion battery life during the full life cycle[J]. Cell Reports Physical Science, 2023, 4(7): 101464. |
145 | ZUO P P, YE C C, JIAO Z R, et al. Near-frictionless ion transport within triazine framework membranes[J]. Nature, 2023, 617: 299-305. |
146 | WU J E, LIAO C Y, LI T Y, et al. Metal-coordinated polybenzimidazole membranes with preferential K+ transport[J]. Nature Communications, 2023, 14: 1149. |
147 | PAN L M, SUN J, QI H H, et al. Dead-zone-compensated design as general method of flow field optimization for redox flow batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(37): e2305572120. |
148 | PANG S, JIN S J, YANG F C, et al. A phenazine-based high-capacity and high-stability electrochemical CO2 capture cell with coupled electricity storage[J]. Nature Energy, 2023, 8: 1126-1136. |
149 | LI Z J, LU Y C. Polysulfide-based redox flow batteries with long life and low levelized cost enabled by charge-reinforced ion-selective membranes[J]. Nature Energy, 2021, 6: 517-528. |
150 | YU D L, ZHI L P, ZHANG F F, et al. Scalable alkaline zinc-iron/nickel hybrid flow battery with energy density up to 200WhL–1[J]. Advanced Materials, 2023, 35(7): 2209390. |
151 | DING F X, WANG H B, ZHANG Q H, et al. Tailoring electronic structure to achieve maximum utilization of transition metal redox for high-entropy Na layered oxide cathodes[J]. Journal of the American Chemical Society, 2023, 145(25): 13592-13602. |
152 | CHU S Y, KIM D, CHOI G, et al. Revealing the origin of transition-metal migration in layered sodium-ion battery cathodes: Random Na extraction and Na-free layer formation[J]. Angewandte Chemie (International Ed in English), 2023, 62(12): e202216174. |
153 | LIU Y, RONG X H, BAI R, et al. Identifying the intrinsic anti-site defect in manganese-rich NASICON-type cathodes[J]. Nature Energy, 2023, 8: 1088-1096. |
154 | ZHANG H, GAO Y, PENG J, et al. Prussian blue analogues with optimized crystal plane orientation and low crystal defects toward 450 Wh/kg alkali-ion batteries[J]. Angewandte Chemie International Edition, 2023, 62(27): 2303953. |
155 | CHEN X Y, SAWUT N, CHEN K A, et al. Filling carbon: A microstructure-engineered hard carbon for efficient alkali metal ion storage[J]. Energy & Environmental Science, 2023, 16(9): 4041-4053. |
156 | LI Y Q, VASILEIADIS A, ZHOU Q, et al. Origin of fast charging in hard carbon anodes[J]. Nature Energy, 2024, 9: 134-142. |
157 | ZHANG Y Y, ZHANG C H, GUO Y J, et al. Refined electrolyte and interfacial chemistry toward realization of high-energy anode-free rechargeable sodium batteries[J]. Journal of the American Chemical Society, 2023, 145(47): 25643-25652. |
158 | JI Y C, QIU J M, ZHAO W G, et al. In situ probing the origin of interfacial instability of Na metal anode[J]. Chem, 2023, 9(10): 2943-2955. |
159 | DAI T, WU S Y, LU Y X, et al. Inorganic glass electrolytes with polymer-like viscoelasticity[J]. Nature Energy, 2023, 8: 1221-1228. |
160 | XU H J, FAN J X, SU H, et al. Metal ion-induced porous MXene for all-solid-state flexible supercapacitors[J]. Nano Letters, 2023, 23(1): 283-290. |
161 | ZHOU H Y, LIN L W, SUI Z Y, et al. Holey Ti3C2 MXene-derived anode enables boosted kinetics in lithium-ion capacitors[J]. ACS Applied Materials & Interfaces, 2023, 15(9): 12161-12170. |
162 | ZHOU Z J, LI P, MAN Z M, et al. Multiscale dot-wire-sheet heterostructured nitrogen-doped carbon dots-Ti3C2Tx/silk nanofibers for high-performance fiber-shaped supercapacitors[J]. Angewandte Chemie International Edition, 2023, 62(20): 2301618. |
163 | YE Y, ZHANG H C, SHI Y, et al. A N/S Co-doped free-standing carbon electrode derived from waste facial masks for anti-freezing flexible quasi-solid-state supercapacitors[J]. Chemical Communications, 2023, 59(45): 6925-6928. |
164 | DAI J G, YANG C Y, XU Y T, et al. MoS2 @Polyaniline for aqueous ammonium-ion supercapacitors[J]. Advanced Materials, 2023, 35(39): e2303732. |
165 | SONG J L, CHAI L L, KUMAR A, et al. Precise tuning of hollow and pore size of bimetallic MOFs derivate to construct high-performance nanoscale materials for supercapacitors and sodium-ion batteries[J]. Small, 2024, 20(14): e2306272. |
166 | HUANG S, LI Z, LI P, et al. Ultrahigh-voltage aqueous electrolyte for wide-temperature supercapacitors[J]. Journal of Materials Chemistry A, 2023, 11(28): 15532-15539. |
167 | LIANG H Y, TANG S D, ZHOU Y, et al. Non-faraday electrolyte additives for capacitance boosting by compression of dielectric layer thickness: Organic ferroelectric salts[J]. Advanced Functional Materials, 2024, 34(1): 2308872. |
168 | SUN Q, YI Z L, FAN Y F, et al. Whole landscape of the origin and evolution of gassing in supercapacitors at a high voltage[J]. ACS Applied Materials & Interfaces, 2023, 15(47): 54386-54396. |
169 | TANG P, TAN W Y, LI F Z, et al. A pseudocapacitor diode based on ion-selective surface redox effect[J]. Advanced Materials, 2023, 35(10): e2209186. |
170 | YAN S, FAN L, LI H M, et al. Novel high-voltage Zn-based electrode based on displacement reaction for liquid metal batteries[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(31): 11693-11699. |
171 | XIE H L, CHU P, YANG M A, et al. A novel Sb-Zn electrode with ingenious discharge mechanism towards high-energy-density and kinetically accelerated liquid metal battery[J]. Energy Storage Materials, 2023, 54: 20-29. |
172 | ZHOU H, LI H M, YAN S, et al. In situ displacement reactions of molten sodium anode and multi-cationic halide electrolytes enabling high-performance liquid metal batteries[J]. Chemical Engineering Journal, 2024, 485: 149786. |
173 | ZHOU Y, NING X H. Improving wettability at positive electrodes to enhance the cycling stability of Bi-based liquid metal batteries[J]. Small, 2024, 20(3): 2304528. |
174 | ZHANG W X, YAN S, LI H M, et al. A novel array current collector design enabling high energy efficiency liquid metal batteries[J]. Chemical Engineering Journal, 2024, 487: 150277. |
175 | ZHOU X B, GAO C L, WANG K L, et al. A comparative study of thermally and electromagnetically driven flow in the electrolyte of liquid metal batteries and their effects on ion transport[J]. IEEE Transactions on Industry Applications, 2024, 60(1): 1760-1769. |
176 | ZHOU X B, JIANG K, WANG K L. Enhancing the discharge performance of liquid metal batteries through external magnetic fields[J]. Energy Proceedings, 2024, 41. |
177 | YAN S, LI H M, CHEN W X, et al. Full-lifetime recycling and reutilization of key materials of low-cost and sustainable liquid metal batteries[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(48): 17038-17045. |
178 | SHI Q L, ZHAO L, ZHANG E, et al. The future capacity prediction using a hybrid data-driven approach and aging analysis of liquid metal batteries[J]. Journal of Energy Storage, 2023, 67: 107637. |
179 | SHI Q L, LI H M, WANG K L, et al. Capacity estimation based on the aging characteristics analysis of liquid metal batteries[C]//2023 11th International Conference on Power Electronics and ECCE Asia (ICPE 2023-ECCE Asia). Jeju Island, Korea, Republic of. IEEE, 2023: 3102-3107. |
180 | XIA J Y, SHI Q L, LI H M, et al. A novel sorting method for liquid metal batteries based on deep learning and sequential features[J]. Journal of Energy Storage, 2023, 64: 107093. |
181 | ZHANG E, XU C, WANG S, et al. Effects of cell-to-cell variations on series-connected liquid metal battery pack capacity[J]. Journal of Energy Storage, 2023, 73: 109148. |
182 | CAI M Y, ZHANG E, LIN J, et al. Route optimization equalization scheme based on graph theory for liquid metal battery strings[J]. IEEE Transactions on Industry Applications, 2023, 59(2): 2502-2508. |
183 | SUI Y R, LIN H S, DING Z X, et al. Compact, efficient, and affordable absorption Carnot battery for long-term renewable energy storage[J]. Applied Energy, 2024, 357: 122504. |
184 | AI W, WANG L, LIN X P, et al. Multivariate multi-objective collaborative optimization of pumped thermal-liquid air energy storage[J]. Journal of Energy Storage, 2024, 81: 110257. |
185 | WANG H Y, ZHANG Y F, JIN P, et al. Dynamic thermodynamic performance analysis of a novel pumped thermal electricity storage (N-PTES) system coupled with liquid piston[J]. Journal of Energy Storage, 2024, 84: 110836. |
186 | JIANG X H, ZHANG X, WANG R Q, et al. Comparative study of thermally integrated pumped thermal energy storage based on the organic Rankine cycle with different working fluid pairs[J]. Frontiers in Energy Research, 2023, 11: 1338391. |
187 | ZHAO Y L, SONG J, LIU M, et al. Multi-objective thermo-economic optimisation of Joule-Brayton pumped thermal electricity storage systems: Role of working fluids and sensible heat storage materials[J]. Applied Thermal Engineering, 2023, 223: 119972. |
188 | AN X G, HE Q, ZHANG Q X, et al. Physical modeling and dynamic characteristics of pumped thermal energy storage system[J]. Energy, 2024, 290: 130144. |
189 | ZHANG H, WANG L, LIN X P, et al. Operating mode of Brayton-cycle-based pumped thermal electricity storage system: Constant compression ratio or constant rotational speed?[J]. Applied Energy, 2023, 343: 121107. |
190 | ZHANG M Y, SHI L F, HU P, et al. Carnot battery system integrated with low-grade waste heat recovery: Toward high energy storage efficiency[J]. Journal of Energy Storage, 2023, 57: 106234. |
191 | 卢沛, 王晋, 陈锴煌, 等. 新型全时段耦合余热的卡诺电池系统构建及热-经济性评估[J]. 工程热物理学报, 2023, 44(11): 3084-3090. |
LU P, WANG J, CHEN K H, et al. Thermo-economic evaluation of a novel Carnot battery with thermal integration during charging and discharging process[J]. Journal of Engineering Thermophysics, 2023, 44(11): 3084-3090. | |
192 | WANG P L, LI Q B, WANG S K, et al. Thermo-economic analysis and comparative study of different thermally integrated pumped thermal electricity storage systems[J]. Renewable Energy, 2023, 217: 119150. |
193 | ZHANG M Y, SHI L F, ZHANG Y H, et al. Configuration mapping of thermally integrated pumped thermal energy storage system[J]. Energy Conversion and Management, 2023, 294: 117561. |
194 | YONG Q Q, JIN K Y, LI X B, et al. Thermo-economic analysis for a novel grid-scale pumped thermal electricity storage system coupled with a coal-fired power plant[J]. Energy, 2023, 280: 128109. |
195 | 韩瑞, 廖志荣, 于博旭, 等. 面向火电厂改造的熔盐卡诺电池储能系统仿真研究[J]. 储能科学与技术, 2023, 12(12): 3605-3615. |
HAN R, LIAO Z R, YU B X, et al. Simulation study of a molten-salt Carnot battery energy storage system for retrofitting a thermal power plant[J]. Energy Storage Science and Technology, 2023, 12(12): 3605-3615. | |
196 | WANG P L, LI Q B, WANG S K, et al. Off-design performance evaluation of thermally integrated pumped thermal electricity storage systems with solar energy[J]. Energy Conversion and Management, 2024, 301: 118001. |
197 | YANG H, WU J B, DU X Z. Thermo-economic analysis and multi-objective optimization of solar aided pumped thermal electricity storage system[J]. Journal of Energy Storage, 2023, 70: 107994. |
198 | 王卓冉, 张梦研, 郭恩岐, 等. 重力储能放能效率探究[J]. 大学物理实验, 2023, 36(2): 1-4. |
WANG Z R, ZHANG M Y, GUO E Q, et al. Exploration of gravity energy storage and discharge efficiency[J]. Physical Experiment of College, 2023, 36(2): 1-4. | |
199 | 杨振清, 吕钰卓, 卢贝旎, 等. 一种实验室重力储能装置的设计与研制[J]. 大学物理实验, 2023, 36(5): 61-65. |
YANG Z Q, LÜ Y Z, LU B N, et al. The design and fabrication of the self-made laboratory gravity energy storage device[J]. Physical Experiment of College, 2023, 36(5): 61-65. | |
200 | 秦婷婷, 周学志, 郭丁彰, 等. 铁轨重力储能系统效率影响因素研究[J]. 储能科学与技术, 2023, 12(3): 835-845. |
QIN T T, ZHOU X Z, GUO D Z, et al. Study on factors influencing rail gravity energy storage system efficiency[J]. Energy Storage Science and Technology, 2023, 12(3): 835-845. | |
201 | 聂亚惠, 周学志, 郭丁彰, 等. 铁轨重力储能系统关键影响因素及其与风电场的耦合研究[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2023.0962. |
202 | 邱清泉, 罗晓悦, 林玉鑫, 等. 垂直式重力储能系统的研究进展和关键技术[J]. 储能科学与技术, 2024, 13(3): 934-945. |
QIU Q Q, LUO X Y, LIN Y X, et al. Research progress and key technologies in vertical gravity energy storage systems[J]. Energy Storage Science and Technology, 2024, 13(3): 934-945. | |
203 | 卢子敬, 蒋霖, 李东伟, 等. 基于鲸鱼算法的新能源储能系统调度模型研究[J]. 信息技术, 2023, 47(7): 125-130, 135. |
LU Z J, JIANG L, LI D W, et al. Research on scheduling model of new energy storage system based on whale algorithm[J]. Information Technology, 2023, 47(7): 125-130, 135. | |
204 | 刘晓辉, 袁康, 白亚奎, 等. 框架式重力储能系统经济性分析[J]. 分布式能源, 2023, 8(3): 47-53. |
LIU X H, YUAN K, BAI Y K, et al. Economic analysis of frame gravity energy storage system[J]. Distributed Energy, 2023, 8(3): 47-53. | |
205 | YANG Q G, LIU Q J, FU Q, et al. Smart microgrid construction in abandoned mines based on gravity energy storage[J]. Heliyon, 2023, 9(11): e21481. |
206 | 王玉莹, 杨晓斌, 陈君青, 等. 新型重力储能的原理效率及其选材选址分析[J]. 工程研究——跨学科视野中的工程, 2023, 15(3): 193-203. |
WANG Y Y, YANG X B, CHEN J Q, et al. The principle efficiency of the new gravity energy storage and its site selection analysis[J]. Journal of Engineering Studies, 2023, 15(3): 193-203. | |
207 | 杨闯, 朱曙荣, 边技超, 等. 新型物理储能技术路线分析[J]. 电站辅机, 2023, 44(2): 10-15. |
YANG C, ZHU S R, BIAN J C, et al. Analysis for new physical energy storage technology route[J]. Power Station Auxiliary Equipment, 2023, 44(2): 10-15. | |
208 | 向开端, 王辉, 彭婷婷, 等. 含混合储能的风光储系统容量优化配置[J]. 科学技术与工程, 2023, 23(31): 13415-13422. |
XIANG K D, WANG H, PENG T T, et al. Optimal capacity allocation of wind-solar-storage system with hybrid energy storage[J]. Science Technology and Engineering, 2023, 23(31): 13415-13422. | |
209 | 张陵, 南东亮, 赵启, 等. 基于重力储能的混合储能系统容量优化配置[J]. 计算机仿真, 2024, 41(1): 103-110. |
ZHANG L, NAN D L, ZHAO Q, et al. Optimal configuration of hybrid energy storage system capacity based on gravity energy storage battery[J]. Computer Simulation, 2024, 41(1): 103-110. | |
210 | 王建元, 烁伦. 用户侧重力-蓄电池混合储能系统配置优化与效益分析[J]. 电气应用, 2024, 43(1): 8-17. |
WANG J Y, SHUO L. Configuration optimization and benefit analysis of user side gravity-battery hybrid energy storage system[J]. Electrotechnical Application, 2024, 43(1): 8-17. | |
211 | 陆秋瑜, 杨银国, 谢平平, 等. 风电场集群租赁共享储能两阶段优化运行策略[J]. 电网技术, 2024, 48(3): 1146-1165. |
LU Q Y, YANG Y G, XIE P P, et al. Two-stage optimal operation strategy of wind farm cluster leasing shared energy storage[J]. Power System Technology, 2024, 48(3): 1146-1165. | |
212 | 孙培锋, 陆王琳, 白鹏, 等. 锂电池和超级电容混合储能辅助火电调频技术发展现状和趋势[J]. 动力工程学报, 2024, 44(3): 418-429. |
SUN P F, LU W L, BAI P, et al. Development status and trends of lithium battery and supercapacitor hybrid energy storage assisted thermal power frequency regulation technology[J]. Journal of Chinese Society of Power Engineering, 2024, 44(3): 418-429. | |
213 | 卢奇秀. 新型储能的四个"关键词" [N]. 中国能源报, 2024-01-15(3). |
214 | 松下四维. 松下四维将面向储能电站提供主动安全预警服务[EB/OL]. [2023-11-08]. https://life.ynet.com/2023/11/09/3690639t978.html. |
215 | JIA Z Z, WANG S P, QIN P, et al. Comparative investigation of the thermal runaway and gas venting behaviors of large-format LiFePO4 batteries caused by overcharging and overheating[J]. Journal of Energy Storage, 2023, 61: 106791. |
216 | WANG G Q, KONG D P, PING P, et al. Modeling venting behavior of lithium-ion batteries during thermal runaway propagation by coupling CFD and thermal resistance network[J]. Applied Energy, 2023, 334: 120660. |
217 | SONG L F, HUANG Z H, MEI W X, et al. Thermal runaway propagation behavior and energy flow distribution analysis of 280 Ah LiFePO4 battery[J]. Process Safety and Environmental Protection, 2023, 170: 1066-1078. |
218 | MENG X D, JIANG L H, DUAN Q L, et al. Experimental study on exploration of optimum extinguishing agent for 243 Ah lithium iron phosphate battery fires[J]. Process Safety and Environmental Protection, 2023, 177: 138-151. |
[1] | 张大兴, 黄泽荣, 王祥东, 王延凯, 蔡冰子, 袁昊宇, 田明明, 袁英平, 曹原. 基于功率变换器的梯次利用电池系统均衡控制策略[J]. 储能科学与技术, 2024, 13(5): 1635-1642. |
[2] | 严文博, 黄云辉, 王栋, 唐金锐, 周克亮. 基于虚拟母线电压控制的构网型储能变流器稳定性优化研究[J]. 储能科学与技术, 2024, 13(5): 1532-1541. |
[3] | 张涛, 刘嘉楷, 戴天乐, 许诚. 二氧化碳电热储能与液态储能系统热力性能对比分析[J]. 储能科学与技术, 2024, 13(5): 1554-1563. |
[4] | 晁武杰, 邓超平, 黄均纬, 乔鑫, 蔡曹轩, 徐润东, 凌志斌. 级联半桥拓扑直流直挂储能装置的设计[J]. 储能科学与技术, 2024, 13(5): 1516-1522. |
[5] | 孙振新, 张秩鸣, 马俯波, 蒋丛进, 杜昊易, 陈换军, 张玉魁. 基于熵理论的能量调节性能研究[J]. 储能科学与技术, 2024, 13(5): 1584-1591. |
[6] | 彭鹏, 赵宇鑫, 李福, 李毓烜, 孙万洲, 孙玉树, 王健, 唐西胜. 数据中心储能型不间断电源系统及其控制技术[J]. 储能科学与技术, 2024, 13(5): 1574-1583. |
[7] | 李润源, 郭傅傲, 赵钢超. 集装箱式锂离子电池储能系统消防安全早期预警方法[J]. 储能科学与技术, 2024, 13(5): 1595-1602. |
[8] | 郭东泽, 张继红, 王庆宇, 张帅. 平抑风电出力波动的混合储能功率分配策略[J]. 储能科学与技术, 2024, 13(5): 1564-1573. |
[9] | 何婷, 乔俊强, 吴国栋. 基于GRU算法的弃电量预测及电-氢混合储能系统的运行优化[J]. 储能科学与技术, 2024, 13(5): 1731-1740. |
[10] | 郭军丽. 电化学储能电站消防安全法律治理对策[J]. 储能科学与技术, 2024, 13(5): 1744-1747. |
[11] | 朱璟, 郝峻丰, 孙蔷馥, 张新新, 申晓宇, 岑官骏, 乔荣涵, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2024.2.1—2024.3.31)[J]. 储能科学与技术, 2024, 13(5): 1398-1416. |
[12] | 杨立杰. 相变储能材料在建筑工程建设中的应用[J]. 储能科学与技术, 2024, 13(5): 1471-1473. |
[13] | 张研, 袁征. 压缩空气储能系统的微机电控制技术[J]. 储能科学与技术, 2024, 13(5): 1551-1553. |
[14] | 马青有. 基于储能和智能控制的空调系统能耗优化研究[J]. 储能科学与技术, 2024, 13(5): 1592-1594. |
[15] | 史玲华, 吴松丽. 大数据型热储存系统的能量存储安全性[J]. 储能科学与技术, 2024, 13(5): 1603-1605. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||