储能科学与技术 ›› 2024, Vol. 13 ›› Issue (5): 1398-1416.doi: 10.19799/j.cnki.2095-4239.2024.0336
朱璟(), 郝峻丰, 孙蔷馥, 张新新, 申晓宇, 岑官骏, 乔荣涵, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰(
)
收稿日期:
2024-04-18
出版日期:
2024-05-28
发布日期:
2024-05-28
通讯作者:
黄学杰
E-mail:zhujing16@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
作者简介:
朱璟(1998—),男,硕士研究生,研究方向为固态电池正极材料,E-mail:zhujing16@mails.ucas.ac.cn;
Jing ZHU(), Junfeng HAO, Qiangfu SUN, Xinxin ZHANG, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG(
)
Received:
2024-04-18
Online:
2024-05-28
Published:
2024-05-28
Contact:
Xuejie HUANG
E-mail:zhujing16@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
摘要:
本文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2024年2月1日至2024年3月31日上线的锂电池研究论文,共有7512篇,选择其中100篇加以评论。正极材料的研究集中于高镍三元、富锂正极材料的掺杂改性和表面包覆,以及其在长循环过程中的结构演变等。负极材料的研究重点包括硅基负极的微结构、组分优化和黏结剂选择,金属锂负极侧重于界面构筑与调控。固态电解质的研究主要包括氧化物固态电解质、硫化物固态电解质和聚合物固态电解质的结构设计以及相关性能研究,电解液研究则主要包括不同电解质盐和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。针对固态电池,包覆技术、复合电极和电池设计有多篇文献报道。锂硫电池的研究重点是硫正极的结构设计、功能涂层和电解液的改进,固态锂硫电池也引起了广泛关注。电极研究侧重于生产工艺技术。表征分析涵盖了正极材料的结构相变、负极SEI的成分和结构分析等。理论模拟工作侧重于界面离子传输的研究,以及通过计算模拟来优化电极结构。
中图分类号:
朱璟, 郝峻丰, 孙蔷馥, 张新新, 申晓宇, 岑官骏, 乔荣涵, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2024.2.1—2024.3.31)[J]. 储能科学与技术, 2024, 13(5): 1398-1416.
Jing ZHU, Junfeng HAO, Qiangfu SUN, Xinxin ZHANG, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2024 to Mar. 31, 2024)[J]. Energy Storage Science and Technology, 2024, 13(5): 1398-1416.
1 | BERK R B, BEIERLING T, METZGER L, et al. Investigation of the particle formation mechanism during coprecipitation of Ni-rich hydroxide precursor for Li-ion cathode active material[J]. Journal of the Electrochemical Society, 2023, 170(11): 110513. |
2 | JIANG W, ZHU X X, LIU Y W, et al. Mechanically reinforced Ni-rich cathodes for High-Power and Long-Life All-Solid-State batteries[J]. Chemical Engineering Science, 2024, doi: 10.1016/j.ces.2024.119775. |
3 | PARK G T, HAN S M, RYU J H, et al. Opening a new horizon for the facile synthesis of long-life Ni-rich layered cathode[J]. ACS Energy Letters, 2023, 8(9): 3784-3792. |
4 | ZUO J X, WANG J, DUAN R X, et al. Grain binding derived reinforced interfacial mechanical behavior of Ni-rich layered cathode materials[J]. Nano Energy, 2024, doi: 10.1016/j.nanoen.2023.109214. |
5 | HWANG J, LEE S, KIM S, et al. Uniform and multifunctional PEI‐POSS/carbon encapsulation for high-rate performance and surface stabilization of nickel‐rich layered cathodes in lithium‐ion batteries[J]. Advanced Functional Materials, 2023, doi: 10.1002/adfm.202304614. |
6 | HOU Y K, LI C, REN D, et al. Enabling electrochemical-mechanical robustness of ultra-high Ni cathode via self-supported primary-grain-alignment strategy[J]. Advanced Science, 2023, doi: 10.1002/advs.202306347. |
7 | LI F K, LIU Z B, LIAO C J, et al. Gradient boracic polyanion doping-derived surface lattice modulation of high-voltage Ni-rich layered cathodes for high-energy-density Li-ion batteries[J]. Acs Energy Letters, 2023, 8(11): 4903-4914. |
8 | DAI H D, GOMES L, MAXWELL D S, et al. Exploring the role of an electrolyte additive in suppressing surface reconstruction of a Ni-rich NMC cathode at ultrahigh voltage via enhanced in situ and operando characterization methods[J]. ACS applied materials & interfaces, 2024, 16(7): 8639-8654. |
9 | KIM M, LEE W, LEE E, et al. Decoupling the capacity fading in Ni-rich layered materials during high-temperature cycling in the full-cell system[J]. Advanced Energy Materials, 2023, 13(41): 2302209. |
10 | PARK N Y, KIM M C, HAN S M, et al. Mechanism behind the loss of fast charging capability in nickel-rich cathode materials[J]. Angewandte Chemie (International Ed in English), 2024, 63(12): e202319707. |
11 | DAI Z S, LI Z J, CHEN R J, et al. Defective oxygen inert phase stabilized high-voltage nickel-rich cathode for high-energy lithium-ion batteries[J]. Nature Communications, 2023, 14: 8087. |
12 | SHI X M, JIA Z Z, WANG D H, et al. Achieving high safety for lithium-ion batteries by optimizing electron and phonon transport[J]. ACS Energy Letters, 2023, 8(11): 4540-4546. |
13 | LIU Y Y, ZHANG C Y, LIN L S, et al. Intrinsic highly conductive and mechanically robust Li-rich cathode materials enabled by microstructure engineering for enhanced electrochemical properties[J]. Advanced Functional Materials, 2024, doi: 10.1002/adfm.202308494. |
14 | SU Y, ZHAO J, DONG J, et al. Atomic pins bridging integrated surface to assist high-rate stability for Co-free Li-rich cathode[J]. Chemical Engineering Journal, 2023, doi: 10.1016/j.cej.2023.145991. |
15 | LUO D, ZHU H, XIA Y, et al. A Li-rich layered oxide cathode with negligible voltage decay[J]. Nature Energy, 2023, 8: 1078-1087. |
16 | JANG H Y, EUM D, CHO J, et al. Structurally robust lithium-rich layered oxides for high-energy and long-lasting cathodes[J]. Nature Communications, 2024, 15: 1288. |
17 | MARTENS I, VOSTROV N, MIROLO M, et al. Defects and nanostrain gradients control phase transition mechanisms in single crystal high-voltage lithium spinel[J]. Nature Communications, 2023, 14: 6975. |
18 | CHEN K, BARAI P, KAHVECIOGLU O, et al. Cobalt-free composite-structured cathodes with lithium-stoichiometry control for sustainable lithium-ion batteries[J]. Nature Communications, 2024, 15: 430. |
19 | GAO Y, FAN L, ZHOU R, et al. High-performance silicon-rich microparticle anodes for lithium-ion batteries enabled by internal stress mitigation[J]. Nano-Micro Letters, 2023, 15(1): 222. |
20 | LIU W, SU S, WANG Y, et al. Constructing a stable conductive network for high-performance silicon-based anode in lithium-ion batteries[J]. ACS applied materials & interfaces, 2024, 16(8): 10703-10713. |
21 | WANG F, MAO J, ZHAO Y. Crystal engineering of silica anode achieving intrinsic zero‐strain[J]. Advanced Materials, 2023, doi: 10.1002/adma.202307908. |
22 | HWANG J H, KIM E, LIM E Y, et al. A multifunctional interlocked binder with synergistic in situ covalent and hydrogen bonding for high-performance Si anode in Li-ion batteries[J]. Advanced Science, 2023, 10(30): e2302144. |
23 | HAN D Y, HAN I K, JANG H Y, et al. Interface engineering of Si-based anodes with fluorinated binder enabling lean-additive lithium-ion batteries[J]. Energy Storage Materials, 2024, doi: 10.1016/j.ensm.2024.103176. |
24 | RYOSUKE S, MINORU I, TAKAYUKI D. Nanostructure of Si-Sn thick-film electrodes to improve the energy density of oxide-based all-solid-state lithium-ion batteries[J]. Journal of the Electrochemical Society, 2023, 170(11): doi: 10.1149/1945-7111/ad06ea. |
25 | KANG Q, LI Y, ZHUANG Z C, et al. Engineering a dynamic solvent-phobic liquid electrolyte interphase for long-life lithium metal batteries[J]. Advanced Materials, 2024, 36(18): e2308799. |
26 | CHANG C S, ZHANG M T, LAO Z J, et al. Achieving stable lithium anodes through leveraging inevitable stress variations via adaptive piezoelectric effect[J]. Advanced Materials, 2024: e2313525. |
27 | KANG Q, ZHUANG Z C, LIU Y J, et al. Engineering the structural uniformity of gel polymer electrolytes via pattern-guided alignment for durable, safe solid-state lithium metal batteries[J]. Advanced Materials, 2023, 35(38): e2303460. |
28 | SERBESSA G G, TAKLU B W, NIKODIMOS Y, et al. Boosting the interfacial stability of the Li6PS5Cl electrolyte with a Li anode via in situ formation of a LiF-rich SEI layer and a ductile sulfide composite solid electrolyte[J]. ACS Applied Materials & Interfaces, 2024, 16(8): 10832-10844. |
29 | SHEN Z Z, ZHANG X S, WAN J, et al. Nanoscale visualization of lithium plating/stripping tuned by on-site formed solid electrolyte interphase in all-solid-state lithium-metal batteries[J]. Angewandte Chemie (International Ed in English), 2024, 63(13): e202316837. |
30 | LI S, YANG S J, LIU G X, et al. A dynamically stable mixed conducting interphase for all-solid-state lithium metal batteries[J]. Advanced Materials, 2024, 36(3): e2307768. |
31 | HAO W, BASU S, HWANG G S. First-principles prediction of reaction-induced structural evolution at the interface between lithium metal and sulfide electrolytes[J]. Journal of Physical Chemistry C, 2024, doi: 10.1021/acs.jpcc.4c00327. |
32 | HAO H C, LIU Y J, GREENE S M, et al. Tuned reactivity at the lithium metal-argyrodite solid state electrolyte interphase[J]. Advanced Energy Materials, 2023, 13(46): 2301338. |
33 | BAI X M, ZHAO G Y, YANG G Y, et al. A magnetic-assisted construction of functional gradient interlayer for dendrite-free solid-state lithium batteries[J]. Energy Storage Materials, 2023, 63: 103041. |
34 | BAI X M, ZHAO G Y, YANG G Y, et al. Multifunctional double layer based on regional segregation for stabilized and dendrite-free solid-state Li batteries[J]. Advanced Energy Materials, 2024, 14(12): 2304112. |
35 | WANG J, ZHANG S S, ZHAO H L, et al. Construction of an intimately riveted Li/garnet interface with ultra-low interfacial resistance for solid-state batteries[J]. Journal of Materials Chemistry A, 2024, 12(8): 4903-4911. |
36 | CHATTERJEE D, NAIK K G, VISHNUGOPI B S, et al. Electrodeposition stability landscape for solid-solid interfaces[J]. Advanced Science, 2024, 11(6): e2307455. |
37 | OH J, CHOI S H, KIM J Y, et al. Anode‐less all‐solid‐state batteries operating at room temperature and low pressure[J]. Advanced Energy Materials, 2023, doi: 10.1002/aenm.202301508. |
38 | GEORGIOS P, MONOJOY G, KEUM JONG K, et al. Nanoscale ion transport enhances conductivity in solid polymer-ceramic lithium electrolytes[J]. ACS Nano, 2024: 18(4): 2750-2762.. |
39 | PEI F, WU L, ZHANG Y, et al. Interfacial self-healing polymer electrolytes for long-cycle solid-state lithium-sulfur batteries[J]. Nature Communications, 2024, 15: 351. |
40 | WANG T H, CHEN B T, LIU C, et al. Build a high-performance all-solid-state lithium battery through introducing competitive coordination induction effect in polymer-based electrolyte[J]. Angewandte Chemie (International Ed in English), 2024, 63(16): e202400960. |
41 | PAN H, WANG L, SHI Y, et al. A solid-state lithium-ion battery with micron-sized silicon anode operating free from external pressure[J]. Nature Communications, 2024, 15: 2263. |
42 | CHENG D Y, WYNN T, LU B Y, et al. A free-standing lithium phosphorus oxynitride thin film electrolyte promotes uniformly dense lithium metal deposition with no external pressure[J]. Nature Nanotechnology, 2023, 18: 1448-1455. |
43 | WU J F, ZOU Z Y, PU B W, et al. Liquid-like Li-ion conduction in oxides enabling anomalously stable charge transport across the Li/electrolyte interface in all-solid-state batteries[J]. Advanced Materials, 2023, 35(40): e2303730. |
44 | XU S J, CHENG X B, YANG S J, et al. Performance enhancement of the Li6PS5Cl-based solid-state batteries by scavenging lithium dendrites with LaCl3-based electrolyte[J]. Advanced Materials, 2024, 36(15): 2310356. |
45 | DU Z, YANG Z Z, TAO R M, et al. A Novel High‐Performance Electrolyte for Extreme Fast Charging in Pilot Scale Li‐ion Pouch Cells[J]. Batteries & Supercaps, 2023, doi: 10.1002/batt.202300292. |
46 | FANG M, YUE X, DONG Y, et al. A temperature-dependent solvating electrolyte for wide-temperature and fast-charging lithium[J]. Joule, 2024, doi: 10.1016/j.joule.2023.12.012. |
47 | LU D, LI R H, RAHMAN M M, et al. Ligand-channel-enabled ultrafast Li-ion conduction[J]. Nature, 2024, 627: 101-107. |
48 | LI A M, WANG Z Y, POLLARD T P, et al. High voltage electrolytes for lithium-ion batteries with micro-sized silicon anodes[J]. Nature Communications, 2024, 15: 1206. |
49 | CHEN L, WANG J X, CHEN M, et al. "Dragging effect" induced fast desolvation kinetics and-50 ℃ workable high-safe lithium batteries[J]. Energy Storage Materials, 2024, 65: 103098. |
50 | CHEN X P, LI Z L, ZHAO H, et al. Dominant solvent-separated ion pairs in electrolytes enable superhigh conductivity for fast-charging and low-temperature lithium ion batteries[J]. ACS Nano, 2024, 18(11): 8350-8359. |
51 | CHEN S M, ZHENG G R, YAO X M, et al. Constructing matching cathode-anode interphases with improved chemo-mechanical stability for high-energy batteries[J]. ACS Nano, 2024, 18(8): 6600-6611. |
52 | YANG M, CHEN K A, LI H, et al. Molecular adsorption-induced interfacial solvation regulation to stabilize graphite anode in ethylene carbonate-free electrolytes[J]. Advanced Functional Materials, 2023, 33(47): 2306828. |
53 | WEILING M, LECHTENFELD C, PFEIFFER F, et al. Mechanistic understanding of additive reductive degradation and SEI formation in high-voltage NMC811||SiOx-containing cells via operando ATR-FTIR spectroscopy[J]. Advanced Energy Materials, 2023, 14(5): doi: 10.1002/aenm.202303568. |
54 | LIU X X, LI Y, LIU J D, et al. 570 wh/kg-grade lithium metal pouch cell with 4.9V highly Li+ conductive armor-like cathode electrolyte interphase via partially fluorinated electrolyte engineering[J]. Advanced Materials, 2024, doi: 10.1002/adma.202401505. |
55 | CHEN C, GUO J L, WU C L, et al. Borate-functionalized disiloxane as effective electrolyte additive for 4.5 V LiNi0.8Co0.1Mn0.1O2/graphite batteries[J]. ACS Applied Materials & Interfaces, 2024, 16(7): 8733-8741. |
56 | CHENG W J, LI N, LIU J C, et al. Solid electrolyte interface film-forming and surface-stabilizing bifunctional 1, 2-bis((trimethylsilyl)oxy) benzene as novel electrolyte additive for silicon-based lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(44): 51025-51035. |
57 | JIA P F, WANG J, ZHENG T L, et al. Boosting cathode activity and anode stability of lithium-sulfur batteries with vigorous iodic species triggered by nitrate[J]. Angewandte Chemie (International Ed in English), 2024: e202401055. |
58 | KIM J T, SHIN H J, KIM A Y, et al. An argyrodite sulfide coated NCM cathode for improved interfacial contact in normal-pressure operational all-solid-state batteries[J]. Journal of Materials Chemistry A, 2023, 11(38): 20549-20558. |
59 | HUANG Y Y, ZHOU L D, LI C, et al. Waxing bare high-voltage cathode surfaces to enable sulfide solid-state batteries[J]. ACS Energy Letters, 2023, 8(11): 4949-4956. |
60 | LU P S, GONG S, WANG C H, et al. Superior low-temperature all-solid-state battery enabled by high-ionic-conductivity and low-energy-barrier interface[J]. ACS Nano, 2024, 18(10): 7334-7345. |
61 | HONG S B, LEE Y J, LEE H J, et al. Exploring the cathode active materials for sulfide-based all-solid-state lithium batteries with high energy density[J]. Small, 2024, 20(9): e2304747. |
62 | LIN C, LIU Y, SU H, et al. Elevating cycle stability and reaction kinetics in Ni-rich cathodes through tailored bulk and interface chemistry for sulfide-based all-solid-state lithium batteries[J]. Advanced Functional Materials, 2024, doi: 10.1002/adfm.202311564. |
63 | KIM J, LEE W, SEOK J, et al. Critical factors to understanding the electrochemical performance of all-solid-state batteries: Solid interfaces and non-zero lattice strain[J]. Small, 2023, doi: 10.1002/smll.202304269. |
64 | CHENG J L, PENG X X, ZHANG Y Q, et al. Oxygen transport through amorphous cathode coatings in solid-state batteries[J]. Chemistry of Materials: a Publication of the American Chemical Society, 2024, 36(6): 2642-2651. |
65 | WANG Y, WU D X, CHEN P H, et al. Dual-function modifications for high-stability Li-rich cathode toward sulfide all-solid-state batteries[J]. Advanced Functional Materials, 2024, 34(4): 2309822. |
66 | ZHANG M H, ZHANG S J, LI M, et al. Self-sacrificing reductive interphase for robust and high-performance sulfide-based all-solid-state lithium batteries[J]. Advanced Energy Materials, 2024, 14(5): 2303647. |
67 | SONG Z H, WANG L, JIANG W Y, et al. "like compatible like" strategy designing strong cathode-electrolyte interface quasi-solid-state lithium-sulfur batteries[J]. Advanced Energy Materials, 2024, 14(4): 2302688. |
68 | CHEN B T, ZHANG J C, WONG D, et al. Achieving the high capacity and high stability of Li-rich oxide cathode in garnet-based solid-state battery[J]. Angewandte Chemie International Edition, 2024, 63(1): 2315856. |
69 | CHENG G Z, SUN H, WANG H R, et al. Efficient ion percolating network for high-performance all-solid-state cathodes[J]. Advanced Materials, 2024: e2312927. |
70 | SONG Z Y, WANG T R, DAI Y M, et al. A sintering-free cathode for garnet-based all-solid-state Li metal batteries[J]. Advanced Energy Materials, 2024: 2304543. |
71 | CAI G R, GAO H P, LI M Q, et al. Partially ion-paired solvation structure design for lithium-sulfur batteries under extreme operating conditions[J]. Angewandte Chemie-International Edition, 2024, doi: 10.1002/anie.202316786. |
72 | WANG M, SU H, ZHONG Y, et al. Localized S-Li2S conversion with accelerated kinetics mediated by mixed conductive shell for high-performance solid-state lithium-sulfur battery[J]. Advanced Energy Materials, 2024, doi: 10.1002/aenm.202302255. |
73 | GUO T, DING Y C, XU C, et al. High crystallinity 2D π-d conjugated conductive metal-organic framework for boosting polysulfide conversion in lithium-sulfur batteries[J]. Advanced Science, 2023, 10(27): e2302518. |
74 | LI J H, WANG Z Y, SHI K X, et al. Nanoreactors encapsulating built-in electric field as a "bridge" for Li–S batteries: Directional migration and rapid conversion of polysulfides[J]. Advanced Energy Materials, 2024, 14(9): 2303546. |
75 | GUO Q Y, WANG C, SHANG J, et al. A freestanding, dissolution- and diffusion-limiting, flexible sulfur electrode enables high specific capacity at high mass loading[J]. Advanced Materials, 2024: 2400041. |
76 | HUANG Y Z, JI Y X, ZHANG L X, et al. Integrated configuration design strategy via cathode-gel electrolyte with forged solid electrolyte interface toward advanced lithium-sulfurized polyacrylonitrile batteries[J]. Advanced Functional Materials, 2023, 33(44): 2306484. |
77 | LI H, WANG R, ZHAO S Q, et al. Sulfur/carbon cathode composite with LiI additives for enhanced electrochemical performance in all-solid-state lithium-sulfur batteries[J]. Advanced Composites and Hybrid Materials, 2023, 6(5): 162. |
78 | SHI C M, TAKEUCHI S, ALEXANDER G V, et al. High sulfur loading and capacity retention in bilayer garnet sulfurized-polyacrylonitrile/lithium-metal batteries with gel polymer electrolytes[J]. Advanced Energy Materials, 2023, 13(42): 2301656. |
79 | CHOI H N, KIM H, KIM M J, et al. Constructing the interconnected charge transfer pathways in sulfur composite cathode for all-solid-state lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2024, 16(8): 11076-11083. |
80 | YANG M, WU Y J, YANG K Q, et al. High-areal-capacity and long-cycle-life all-solid-state lithium-metal battery by mixed-conduction interface layer[J]. Advanced Energy Materials, 2024, 14(15): 2303229. |
81 | GRANDJEAN M, PERREY M, RANDREMA X, et al. Low pressure cycling of solid state Li-ion pouch cells based on NMC-sulfide -nanosilicon chemistry[J]. Journal of Power Sources, 2023, doi: 10.1016/j.jpowsour.2023.233646. |
82 | HAN D Y, SON H B, HAN S H, et al. Hierarchical 3D electrode design with high mass loading enabling high-energy-density flexible lithium-ion batteries[J]. Small, 2023, 19(48): e2305416. |
83 | KIM J H, LEE K M, KIM J W, et al. Regulating electrostatic phenomena by cationic polymer binder for scalable high-areal-capacity Li battery electrodes[J]. Nature Communications, 2023, 14: 5721. |
84 | CHECKO S, JU Z Y, ZHANG B W, et al. Fast-charging, binder-free lithium battery cathodes enabled via multidimensional conductive networks[J]. Nano Letters, 2024, 24(5): 1695-1702. |
85 | TAO R M, TAN S S, MEYER III H M, et al. Insights into the chemistry of the cathodic electrolyte interphase for PTFE-based dry-processed cathodes[J]. ACS Applied Materials & Interfaces, 2023, 15(34): 40488-40495. |
86 | ZHAO W, ZHANG Y, SUN N, et al. Maintaining interfacial transports for sulfide-based all-solid-state batteries operating at low external pressure[J]. Acs Energy Letters, 2023, 8(12): 5050-5060. |
87 | XU Y B, JIA H, GAO P Y, et al. Direct in situ measurements of electrical properties of solid-electrolyte interphase on lithium metal anodes[J]. Nature Energy, 2023, 8: 1345-1354. |
88 | PANTENBURG I, CRONAU M, BOLL T, et al. Challenging prevalent solid electrolyte interphase (SEI) models: An atom probe tomography study on a commercial graphite electrode[J]. ACS Nano, 2023, 17(21): 21531-21538. |
89 | LOMBARDO T, KERN C, SANN J, et al. Bridging the gap: Electrode microstructure and interphase characterization by combining TOF-SIMS and machine learning[J]. Advanced Materials Interfaces, 2023, doi: 10.1002/admi.202300640. |
90 | OSHIRO S, TSUKASAKI H, NAKAJIMA H, et al. 3D observation using TEM tomography of solid electrolyte-electrode interface in all-solid-state Li-ion batteries[J]. Journal of Solid State Electrochemistry, 2023: doi: 10.1007/s10008-023-05714-4. |
91 | PANDYA R, VALZANIA L, DORCHIES F, et al. Three-dimensional operando optical imaging of particle and electrolyte heterogeneities inside Li-ion batteries[J]. Nature Nanotechnology, 2023, 18: 1185-1194. |
92 | FANTIN R, JOUSSEAUME T, RAMOS R, et al. Depth-resolving the charge compensation mechanism from LiNiO2 to NiO2[J]. ACS Energy Letters, 2024, 9(4): 1507-1515. |
93 | HWANG T, CHUNG I, IM S, et al. Contact loss and its improvement at the interface between the cathode and solid electrolyte in all solid-state batteries based on multi-scale and multi-physics analysis[J]. Journal of Materials Chemistry A, 2023, 11(35): 18790-18800. |
94 | CHEN W X, ALLEN J M, REZAEI S, et al. Cohesive phase-field chemo-mechanical simulations of inter- and trans- granular fractures in polycrystalline NMC cathodes via image-based 3D reconstruction[J]. Journal of Power Sources, 2024, 596: 234054. |
95 | ALRASHDAN M H S. Exchange current density at the positive electrode of lithium-ion batteries optimization using the Taguchi method[J]. Journal of Solid State Electrochemistry, 2024, 28(1): 213-227. |
96 | CHEN W X, MUHTAR D, LI K L, et al. Regulating cation disorder triggered-electronic reshuffling for sustainable conventional layered oxide cathodes[J]. Chemistry of Materials, 2024, 36(3): 1249-1261. |
97 | BARAI P, FUCHS T, TREVISANELLO E, et al. Study of void formation at the Lithium|Solid electrolyte interface[J]. Chemistry of Materials, 2024, 36(5): 2245-2258. |
98 | REN F C, WU Y Q, ZUO W H, et al. Visualizing the SEI formation between lithium metal and solid-state electrolyte[J]. Energy & Environmental Science, 2024, 17(8): 2743-2752. |
99 | HAN Z Y, GAO R H, WANG T S, et al. Machine-learning-assisted design of a binary descriptor to decipher electronic and structural effects on sulfur reduction kinetics[J]. Nature Catalysis, 2023, 6: 1073-1086. |
100 | PARK Y S, KIM K, LEE J W, et al. Effect of cell pressure on the electrochemical performance of all-solid-state lithium batteries with zero-excess Li metal anode[J]. Journal of the American Ceramic Society, 2023, 106(12): 7322-7330. |
[1] | 汪红辉, 李嘉鑫, 储德韧, 李彦仪, 许铤. 磷酸铁锂电池存储失效机理及热安全性研究[J]. 储能科学与技术, 2025, 14(5): 1797-1805. |
[2] | 陈英健, 吴尚, 曹元成, 杜宝帅, 王振兴, 欧阳钟文, 汤舜. 磁场分选在废旧锂电池正负极材料回收中的应用[J]. 储能科学与技术, 2025, 14(5): 1918-1927. |
[3] | 许晓茹, 欧建臻, 刘佳伟, 陈智聪, 叶豪, 刘颖隆, 刘英丽, 林泽宇, 刘晶晶, 简俊辉, 罗栩, 范竞敏, 王超, 雷励斌, 梁波. 带嵌入式微通道陶瓷裂解反应器的管式氨燃料电池[J]. 储能科学与技术, 2025, 14(5): 1818-1828. |
[4] | 李志强, 巴义春, 孙广强. 锂电池蜂窝形叉状流道冷板散热研究[J]. 储能科学与技术, 2025, 14(5): 1776-1783. |
[5] | 贺瑞璘, 张通, 吴镓淳, 王朝阳, 邓永红, 张光照, 许晓雄. 骨架型材料与设计在高比能锂电池中的应用研究进展[J]. 储能科学与技术, 2025, 14(5): 1758-1775. |
[6] | 孙蔷馥, 岑官骏, 乔荣涵, 朱璟, 郝峻丰, 张新新, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 周洪, 黄学杰. 锂电池百篇论文点评(2025.2.1—2025.3.31)[J]. 储能科学与技术, 2025, 14(5): 1727-1747. |
[7] | 丰伟. 废旧锂电池失效机制及回收再利用研究现状[J]. 储能科学与技术, 2025, 14(5): 1928-1930. |
[8] | 刘顺新, 许令平, 张建兴, 曾光, 李昊阳. 基于双通道并行串联式液冷板下锂电池温升特性数值分析[J]. 储能科学与技术, 2025, 14(4): 1496-1506. |
[9] | 金成龙, 孙梦婷, 孟庆飞, 张姝玮, 周舟, 齐宇阳. Li/Cr8O21 电池宽温电解液的设计与应用[J]. 储能科学与技术, 2025, 14(4): 1369-1376. |
[10] | 彭鹏, 王成东, 陈满, 王青松, 雷旗开, 金凯强. 某钛酸锂电池储能电站热失控致灾危害评价[J]. 储能科学与技术, 2025, 14(4): 1617-1630. |
[11] | 陈志铭, 储爱民, 周子榆, 赵玉萍, 陈友明. 含碳雾滴燃烧制备微纳空心球型富锂锰基正极材料及性能研究[J]. 储能科学与技术, 2025, 14(4): 1362-1368. |
[12] | 吉帅静, 王军伟, 杜宝帅, 徐丽, 楼平, 管敏渊, 汤舜, 程时杰, 曹元成. LiFe x Mn1–x PO4 (0<x<1)电池稳定性与安全性的提升路径:从失效机制到综合优化策略[J]. 储能科学与技术, 2025, 14(3): 965-983. |
[13] | 李南, 马静, 黄挺秀, 沈毅星, 沈旻, 江依义, 洪涛, 马国强, 马紫峰. 腈类化合物在高电压电解液中的研究进展[J]. 储能科学与技术, 2025, 14(3): 997-1009. |
[14] | 许陈程, 王湛, 李爽, 蒋江民, 鞠治成. 锂离子电池预锂化技术研究进展及工程化应用展望[J]. 储能科学与技术, 2025, 14(3): 930-946. |
[15] | 卢功勋, 袁华栋, 罗剑敏, 王垚, 刘育京, 石鹏, 邹世辉, 周光敏, 陶新永, 佴建威. 锂金属表面预处理策略:进展与展望[J]. 储能科学与技术, 2025, 14(3): 947-964. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||