1 |
QIN H Q, MO Z Z, LU J, et al. Ultrafast transformation of natural graphite into self-supporting graphene as superior anode materials for lithium-ion batteries[J]. Carbon, 2024, 216: 118559. DOI: 10.1016/j.carbon.2023.118559.
|
2 |
ACHARYA T, PATHAK A D, PATI S. High-temperature electrochemical performance of lithium titanate (Li4Ti5O12) anode material in secondary lithium-ion batteries[J]. Journal of Energy Storage, 2023, 67: 107529. DOI: 10.1016/j.est.2023.107529.
|
3 |
ZHAO L Y, BENNETT J C, GEORGE A, et al. SiC-free carbon-silicon alloys prepared by delithiation as lithium-ion battery negative electrodes[J]. Chemistry of Materials, 2019, 31(11): 3883-3890. DOI: 10.1021/acs.chemmater.8b03898.
|
4 |
ZHANG J C, LIU Z D, ZENG C H, et al. High-voltage LiCoO2 cathodes for high-energy-density lithium-ion battery[J]. Rare Metals, 2022, 41(12): 3946-3956. DOI: 10.1007/s12598-022-02070-6.
|
5 |
STENINA I, MINAKOVA P, KULOVA T, et al. Electrochemical properties of LiFePO4 cathodes: The effect of carbon additives[J]. Batteries, 2022, 8(9): 111. DOI: 10.3390/batteries8090111.
|
6 |
HU S J, PILLAI A S, LIANG G M, et al. Li-rich layered oxides and their practical challenges: Recent progress and perspectives[J]. Electrochemical Energy Reviews, 2019, 2(2): 277-311. DOI: 10. 1007/s41918-019-00032-8.
|
7 |
SONG J, LI B, CHEN Y Y, et al. A high-performance Li-Mn-O Li-rich cathode material with rhombohedral symmetry via intralayer Li/Mn disordering[J]. Advanced Materials, 2020, 32(16): 2000190. DOI: 10.1002/adma.202000190.
|
8 |
LIU W, XU J P, KAN W H, et al. Enhancing ionic transport and structural stability of lithium-rich layered oxide cathodes via local structure regulation[J]. Small, 2023, 19(41): 2302912. DOI: 10. 1002/smll.202302912.
|
9 |
ZHANG K, LI B, ZUO Y X, et al. Voltage decay in layered Li-rich Mn-based cathode materials[J]. Electrochemical Energy Reviews, 2019, 2(4): 606-623. DOI: 10.1007/s41918-019-00049-z.
|
10 |
MA Y T, LIU P F, XIE Q S, et al. Double-shell Li-rich layered oxide hollow microspheres with sandwich-like carbon@spinel@layered@ spinel@carbon shells as high-rate lithium ion battery cathode[J]. Nano Energy, 2019, 59: 184-196. DOI: 10.1016/j.nanoen.2019. 02.040.
|
11 |
LIU S L, YAN P, LI H B, et al. One-step microwave synthesis of micro/nanoscale LiFePO4/graphene cathode with high performance for lithium-ion batteries[J]. Frontiers in Chemistry, 2020, 8: 104. DOI: 10.3389/fchem.2020.00104.
|
12 |
徐祖伟, 高富昌, 龙周禾, 等. 火焰喷雾热解合成Pt/TiO2纳米颗粒的催化燃烧性能[J]. 燃烧科学与技术, 2024, 30(2): 103-110. DOI: 10.11715/rskxjs.R202312021.
|
|
XU Z W, GAO F C, LONG Z H, et al. Catalytic combustion performance of Pt/TiO2 nanoparticles synthesized by flame spray pyrolysis[J]. Journal of Combustion Science and Technology, 2024, 30(2): 103-110. DOI: 10.11715/rskxjs.R202312021.
|
13 |
GAO J, HUANG Z L, LI J J, et al. Preparation and characterization of Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials for lithium-ion battery[J]. Ionics, 2014, 20(3): 301-307. DOI: 10.1007/s11581-013-0991-1.
|
14 |
LI S H, LI H X, ZHANG H Y, et al. Constructing stable surface structures enabling fast charging for Li-rich layered oxide cathodes[J]. Chemical Engineering Journal, 2022, 427: 132036. DOI: 10.1016/j.cej.2021.132036.
|
15 |
DOUMENG M, BERTHET F, DELBÉ K, et al. Effect of size, concentration, and nature of fillers on crystallinity, thermal, and mechanical properties of polyetheretherketone composites[J]. Journal of Applied Polymer Science, 2022, 139(5): 51574. DOI: 10.1002/app.51574.
|
16 |
LIU Z G, SU Z, TIAN H L. Synthesis of β-LiVOPO4/C by sol-gel method and microwave sintering as cathode material for lithium ion batteries[J]. International Journal of Electrochemical Science, 2017, 12(11): 10107-10114. DOI: 10.20964/2017.11.87.
|
17 |
JAMES LI Y J, CHIEN W C, TANG C J, et al. Electrochemical performance of spherical Li-rich LMNCO cathode materials prepared using a two-step spray-drying method[J]. Ceramics International, 2022, 48(5): 6302-6312. DOI: 10.1016/j.ceramint. 2021.11.173.
|
18 |
XIE X, LI H, CAO S, et al. Improving the cycling stability of Li-rich Mn-based cathodes through surface modification of VOPO4[J]. Energy & Fuels, 2021, 35(17): 14148-14156. DOI: 10.1021/acs.energyfuels.1c01898.
|
19 |
ZHAO L, SUN Y Y, SONG K X, et al. Enhanced electrochemical performance of Li-rich Li[Li0.2Mn0.52Ni0.13Co0.13V0.02]O2 cathode materials for lithium ion batteries by Li1.13Mn0.47Ni0.2Co0.2O2 coating[J]. Ionics, 2020, 26(9): 4455-4462. DOI: 10.1007/s11581-020-03621-6.
|
20 |
GUO W B, ZHANG C Y, ZHANG Y G, et al. A universal strategy toward the precise regulation of initial coulombic efficiency of Li-rich Mn-based cathode materials[J]. Advanced Materials, 2021, 33(38): 2103173. DOI: 10.1002/adma.202103173.
|
21 |
WU Z L, XIE H J, LI Y Z, et al. Insights into the chemical and structural evolution of Li-rich layered oxide cathode materials[J]. Inorganic Chemistry Frontiers, 2021, 8(1): 127-140. DOI: 10. 1039/D0QI01021A.
|
22 |
CHEN H, XIA X, MA J. Comprehensive review of Li-rich Mn-based layered oxide cathode materials for lithium-ion batteries: Theories, challenges, strategies and perspectives[J]. ChemSusChem, 2024, 17(24): e202401120. DOI: 10.1002/cssc. 202401120.
|