储能科学与技术 ›› 2025, Vol. 14 ›› Issue (2): 822-830.doi: 10.19799/j.cnki.2095-4239.2024.0843

• 储能测试与评价 • 上一篇    下一篇

基于多状态耦合的退役动力电池模组双阶段分选方法

李春生1(), 王生春1, 宋驰2, 刘立海1, 颜宁3()   

  1. 1.中国石油集团济柴动力有限公司,山东 济南 250306
    2.烟台开发区德联软件有限责任公司,山东 烟台 264006
    3.沈阳工业大学,辽宁 沈阳 110870
  • 收稿日期:2024-09-09 修回日期:2024-10-15 出版日期:2025-02-28 发布日期:2025-03-18
  • 通讯作者: 颜宁 E-mail:lcs_001@126.com;sutxny_yn@126.com
  • 作者简介:李春生(1974—),男,硕士,高级工程师,研究方向为储能系统优化控制,E-mail:lcs_001@126.com
  • 基金资助:
    辽宁省科技计划联合计划(基金)项目(2023-MSLH-267)

The two-stage sorting method for retired power battery modules based on multistate coupling

Chunsheng LI1(), Shengchun WANG1, Chi SONG2, Lihai LIU1, Ning YAN3()   

  1. 1.CNPC Jichai Power Company Limited, Jinan 250306, Shandong, China
    2.Yantai Development Zone Delian Software Co. , Ltd, Yantai 264006, Shandong, China
    3.School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, Liaoning, China
  • Received:2024-09-09 Revised:2024-10-15 Online:2025-02-28 Published:2025-03-18
  • Contact: Ning YAN E-mail:lcs_001@126.com;sutxny_yn@126.com

摘要:

为有效降低退役动力电池梯次利用寿命损耗,提高电池模组运行过程中功能状态的一致性,本工作提出了考虑电池能量状态(state of energy,SOE)、健康状态(state of health,SOH)及功率状态(state of power,SOP)的多状态耦合的电池模组分选方法。首先,提取退役动力电池基本电性能参数(如容量、电压、内阻等),建立了电池模组SOE、SOH及SOP多状态耦合表征模型;其次,估计电池模组SOE特性,预测梯次利用电池模组SOH一致性,采用改进K-means聚类算法对电池模组进行了第一阶段的动态分选。最后,建立了电池模组耦合多参量的SOP表征模型,估计了电池模组中电池之间SOP偏差,对电池模组进行了第二阶段的动态分选。通过仿真算例分析验证该方法有效提高了退役动力电池梯次利用过程中模组的一致性,降低了系统运行的寿命损耗,为梯次利用储能大规模应用提供理论基础。

关键词: 多状态耦合, 退役动力电池模组, 双阶段分选, 改进K-means聚类, 动态一致性

Abstract:

To effectively reduce the lifetime loss of retired power batteries and improve the consistency of functional states during battery module operation, this study proposes a multistate coupled battery module screening method that considers the state of energy (SOE), state of health (SOH), and state of power (SOP). First, key electrical performance parameters of retired power batteries, such as capacity, voltage, and internal resistance, are extracted. Using this data, a multistate coupling characterization model is developed to represent the SOE, SOH, and SOP of battery modules. Next, the SOE characteristics of the battery modules are estimated, and the consistency of SOH across the modules is predicted to enable hierarchical utilization. An improved K-means clustering algorithm is used for the first stage of dynamic sorting of battery modules. Finally, a multiparameter SOP characterization model is constructed to estimate the SOP deviation among batteries within each module. The battery module is dynamically sorted in the second stage. Simulation case analysis demonstrates the effectiveness of this method. It significantly improves the consistency of battery modules during their second use, reduces system operational life loss, and establishes a theoretical foundation for large-scale secondary utilization in energy storage systems.

Key words: multistate coupling, decommissioned power battery modules, two-stage sorting, improved K-means clustering, dynamic consistency

中图分类号: