• XXXX •
王亚丽1(), 李晓艳1, 孙航宇1, 付云枫1, 刘召波1, 杜国山1(
), 刘君1, 陈宋璇1, 胡蒙蒙2
收稿日期:
2025-02-19
修回日期:
2025-01-09
通讯作者:
杜国山
E-mail:wangyali@enfi.com.cn;dugs@enfi.com.cn
作者简介:
王亚丽(1997—),女,博士研究生,中级工程师,固体氧化物燃料电池高性能材料开发,E-mail:wangyali@enfi.com.cn;
基金资助:
Yali Wang1(), Xiaoyan Li1, Hangyu Sun1, Yunfeng Fu1, Zhaobo Liu1, Guoshan Du1(
), Jun Liu1, Sunxuan Chen1, Mengmeng Hu2
Received:
2025-02-19
Revised:
2025-01-09
Contact:
Guoshan Du
E-mail:wangyali@enfi.com.cn;dugs@enfi.com.cn
摘要:
固体氧化物燃料电池(SOFC)可以直接将燃料的化学能转换为电能,具有环保无污染、发电效率高、燃料适应性广等独特优势,被认为是高效的绿色燃料电池技术。支撑体作为SOFC的核心组成部件,对于电池的机械强度、组装工艺和电化学性能起着至关重要的作用。本文通过对近期相关文献的探讨,按照支撑体的主体结构分类,主要介绍了电解质支撑体、电极支撑体(阳极支撑体和阴极支撑体)和金属支撑体的材料组成、作用特点及制备方法,重点综述了不同结构的支撑体的研究现状,详细分析了影响支撑体材料选择和电池性能的关键因素。结合已有的研究报道,明确指出了提高电解质支撑体的强度和减薄电解质支撑体的厚度、稳定阳极支撑体的结构和抑制阳极支撑体的积碳、降低阴极支撑体的浓差极化、增加金属支撑体的抗氧化性和改善金属支撑体的适配性、同步开发与各支撑体结构相匹配的SOFC关键材料是当前及未来的研究重点,也是实现SOFC低温化、低成本和长期稳定运行的关键。本文为SOFC的进一步发展提供了借鉴和参考。
中图分类号:
王亚丽, 李晓艳, 孙航宇, 付云枫, 刘召波, 杜国山, 刘君, 陈宋璇, 胡蒙蒙. 固体氧化物燃料电池支撑体的研究进展[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0042.
Yali Wang, Xiaoyan Li, Hangyu Sun, Yunfeng Fu, Zhaobo Liu, Guoshan Du, Jun Liu, Sunxuan Chen, Mengmeng Hu. Research progress of supports for solid oxide fuel cells[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0042.
1 | SHAO Z, NI M. Fuel Cells: Materials Needs and Advances[J]. MRS Bulletin, 2024, 49: 451-463. |
2 | PHAM T T, MOLLAAMIN F, MONAJJEMI M, et al. A Review of 2019 Fuel Cell Technologies: Modelling and Controlling[J]. International Journal of Nanotechnology, 2020, 17: 498-513. |
3 | YI B, HUO C, XUE D, et al. A Numerical Study of the Performance of Solid Oxide Fuel Cell with Bi-Layer Interconnector[J]. International Journal of Hydrogen Energy, 2024, 87: 1233-1244. |
4 | SINGH M, ZAPPA D, COMINI E. Solid Oxide Fuel Cell: Decade of Progress, Future Perspectives and Challenges[J]. International Journal of Hydrogen Energy, 2021, 46: 27643-27674. |
5 | VINCHHI P, KHANDLA M, CHAUDHARY K, et al. Recent Advances on Electrolyte Materials for SOFC: A Review[J]. Inorganic Chemistry Communications, 2023, 152: 110724. |
6 | AHMED N, DEVI S, DAR M A, et al. Anode Material for Solid Oxide Fuel Cell: A Review[J]. Indian Journal of Physics, 2024, 98: 877-888. |
7 | HUSSAIN S, YANGPING L. Review of Solid Oxide Fuel Cell Materials: Cathode, Anode, and Electrolyte[J]. Energy Transitions, 2020, 4: 113-126. |
8 | 韩婷婷, 吴玉玺, 解子恒, et al. 固体氧化物燃料电池镍基阳极积碳机理及性能提升策略研究进展[J]. 储能科学与技术, 2021, 10: 1931-1942. |
HAN T T, WU Y X, XIE Z H, et al. Recent Advances in Carbon Deposition Mechanism and Performance Improvement of Ni-based Anode | |
for Solid Oxide Fuel Cells[J], Energy Storage Science and Technology, 2021, 10: 1931-1942. | |
9 | 孙春文, 孙杰, 杨伟, et al. 碳基燃料SOFC阳极材料研究进展[J]. 中国工程科学, 2013, 15: 77-87. |
SUN C W, SUN J, YANG W, et al. Research Progress of Carbon-based Fuel SOFC Anode Materials[J], Strategic Study of CAE, 2013, 15: 77-87. | |
10 | ZHANG W, WEI J, YIN F, et al. Recent Advances in Carbon-Resistant Anodes for Solid Oxide Fuel Cells [J]. Materials Chemistry Frontiers, 2023, 7: 1943-1991. |
11 | ZHAO H, LI Q, SUN L. Ln2Mo4 Cathode Materials for Solid Oxide Fuel Cells [J]. Science China Chemistry, 2011, 54: 898-910. |
12 | HUANG Y-L, HUSSAIN A M, WACHSMAN E D. Nanoscale Cathode Modification for High Performance and Stable Low-Temperature Solid Oxide Fuel Cells (SOFCs)[J]. Nano Energy, 2018, 49: 186-192. |
13 | ZHOU J, ZHANG L, LIU C, et al. Aqueous Tape Casting Technique for the Fabrication of Sc0.1Ce0.01Zr0.89O2+Δ Ceramic for Electrolyte-Supported Solid Oxide Fuel Cell[J]. International Journal of Hydrogen Energy, 2019, 44: 21110-21114. |
14 | CHANG H, YAN J, CHEN H, et al. Preparation of Thin Electrolyte Film Via Dry Pressing/Heating/Quenching/Calcining for Electrolyte-Supported SOFCs[J]. Ceramics International, 2019, 45: 9866-9870. |
15 | HSIEH W-S, LIN P, WANG S-F. Fabrication of Electrolyte Supported Micro-Tubular Sofcs Using Extrusion and Dip-Coating[J]. International Journal of Hydrogen Energy, 2013, 38: 2859-2867. |
16 | DU P, WU J, LI Z, et al. Failure Mechanism and Optimization of Metal-Supported Solid Oxide Fuel Cells[J]. Materials, 2023, 16(11):3978. |
17 | FU S, ZHANG J, XU K, et al. Fabrication, Property and Performance Evaluation of Stainless Steel 430l as Porous Supports for Metal Supported Solid Oxide Fuel Cells[J]. Frontiers in Energy Research, 2023, 11: 1127900. |
18 | ZHANG S-L, LI C-X, LI C-J, et al. Investigation into the Diffusion and Oxidation Behavior of the Interface between a Plasma-Sprayed Anode and a Porous Steel Support for Solid Oxide Fuel Cells[J]. Journal of Power Sources, 2016, 323: 1-7. |
19 | WILLIAMS M C, VORA S D, JESIONOWSKI G. Worldwide Status of Solid Oxide Fuel Cell Technology[J]. ECS Transactions, 2020, 96: 1. |
20 | 刘少名, 邓占锋, 徐桂芝, et al. 欧洲固体氧化物燃料电池(SOFC)产业化现状[J]. 工程科学学报, 2020, 42: 278-288. |
LIU S M, DENG Z F, XU G Z, et al. Industrialization Status of Solid Oxide Fuel Cell ( SOFC ) in Europe[J], Chinese Journal of Engineering, 2020, 42: 278-288. | |
21 | JOO J H, CHOI G M. Micro-Solid Oxide Fuel Cell Using Thick-Film Ceria[J]. Solid State Ionics, 2009, 180: 839-842. |
22 | 苑莉莉. 电解质自支撑的直接碳固体氧化物燃料电池的研制[D], 华南理工大学, 2016. |
YUAN L L. Development of electrolyte self-supporting direct carbon solid oxide fuel cells[D], South China University of Technology, 2016. | |
23 | 高可炎, 赵苏旭, 臧予安琪, et al. "383windows"电解质自支撑新构型固体氧化物燃料电池的设计与制备[J]. 微纳电子技术, 2023, 60: 779-785. |
GAO K Y, ZHAO S X, ZANG Y A Q, et al.Design and Preparation of "383Windows" Solid Oxide Fuel Cell with Electrolyte Self-Supporting New Configuration[J]. Micro-nano electronics, 2023, 60: 779-785. | |
24 | CELIK S, TIMURKUTLUK B, TOROS S, et al. Mechanical and Electrochemical Behavior of Novel Electrolytes Based on Partially Stabilized Zirconia for Solid Oxide Fuel Cells[J]. Ceramics International, 2015, 41: 8785-8790. |
25 | ZHIGACHEV A O, RODAEV V V, ZHIGACHEVA D V, et al. Doping of Scandia-Stabilized Zirconia Electrolytes for Intermediate-Temperature Solid Oxide Fuel Cell: A Review[J]. Ceramics International, 2021, 47: 32490-32504. |
26 | SOUZA J P, GROSSO R L, MUCCILLO R, et al. Phase Composition and Ionic Conductivity of Zirconia Stabilized with Scandia and Europia[J]. Materials Letters, 2018, 229: 53-56. |
27 | 杨国泉. 基于ScSZ电解质的固体氧化物燃料电池的制备及其性能表征[D], 北京理工大学, 2015. |
YANG G Q. Preparation and characterization of solid oxide fuel cells based on ScSZ electrolyte[D], Beijing Institute of Technology, 2015. | |
28 | MATKIN D E, STAROSTINA I A, HANIF M B, et al. Revisiting the Ionic Conductivity of Solid Oxide Electrolytes: A Technical Review[J]. Journal of Materials Chemistry A, 2024, 12: 25696-25714. |
29 | CHEN G, ZHANG X, LUO Y, et al. Ionic Conduction Mechanism of a Nanostructured Bcy Electrolyte for Low-Temperature SOFC[J]. International Journal of Hydrogen Energy, 2020, 45: 24108-24115. |
30 | CHRISTIANSEN N, PRIMDAHL S, WANDEL M, et al. Status of the Solid Oxide Fuel Cell Development at Topsoe Fuel Cell a/S and Dtu Energy Conversion[J]. ECS Transactions, 2013, 57: 43. |
31 | HALINEN M, SAARINEN J, NOPONEN M, et al. Experimental Analysis on Performance and Durability of Sofc Demonstration Unit[J]. Fuel Cells, 2010, 10: 440-452. |
32 | SHRI PRAKASH B, SENTHIL KUMAR S, ARUNA S T. Properties and Development of Ni/YSZ as an Anode Material in Solid Oxide Fuel Cell: A Review[J]. Renewable and Sustainable Energy Reviews, 2014, 36: 149-179. |
33 | YU J H, PARK G W, LEE S, et al. Microstructural Effects on the Electrical and Mechanical Properties of Ni-YSZ Cermet for SOFC Anode[J]. Journal of Power Sources, 2007, 163: 926-932. |
34 | 刘欣. 固体氧化物燃料电池中Ni-YSZ阳极的稳定性研究[D], 哈尔滨工业大学, 2020. |
LIU Y. Stability study of Ni-YSZ anode in solid oxide fuel cell[D], Harbin Institute of Technology, 2020. | |
35 | WALDBILLIG D, WOOD A, IVEY D G. Electrochemical and Microstructural Characterization of the Redox Tolerance of Solid Oxide Fuel Cell Anodes[J]. Journal of Power Sources, 2005, 145: 206-215. |
36 | KONG J, SUN K, ZHOU D, et al. Ni-YSZ Gradient Anodes for Anode-Supported Sofcs[J]. Journal of Power Sources, 2007, 166: 337-342. |
37 | 吴琪雯, 朱子翼, 叶梓滨, et al. 流延相转换法制备阳极支撑SOFC及其性能研究[J]. 电源技术, 2023, 47: 1616-1620. |
WU Q W, ZHU Z Y, YE Z B, et al.Electrochemical Performance of Anode-supported SOFC Fabricated by Tape Casted Phase Inversion Method[J]. Electronic Technology, 2023, 47: 1616-1620. | |
38 | TAO S, IRVINE J T S. A Redox-Stable Efficient Anode for Solid-Oxide Fuel Cells[J]. Nature Materials, 2003, 2: 320-323. |
39 | HUSSAIN A M, HUANG Y-L, PAN K-J, et al. A Redox-Robust Ceramic Anode-Supported Low-Temperature Solid Oxide Fuel Cell[J]. ACS Applied Materials & Interfaces, 2020, 12: 18526-18532. |
40 | ABU TAHARI M N, SALLEH F, TENGKU SAHARUDDIN T S, et al. Influence of Hydrogen and Various Carbon Monoxide Concentrations on Reduction Behavior of Iron Oxide at Low Temperature[J]. International Journal of Hydrogen Energy, 2019, 44: 20751-20759. |
41 | KOH J-H, YOO Y-S, PARK J-W, et al. Carbon Deposition and Cell Performance of Ni-YSZ Anode Support SOFC with Methane Fuel[J]. Solid State Ionics, 2002, 149: 157-166. |
42 | WANG R, WANG T, MA Y, et al. Control of Carbon Deposition over Methane-Fueled SOFCs through Tuning the O/C Ratio at the Anode/Electrolyte Interface[J]. Journal of Power Sources, 2022, 544: 231854. |
43 | 邵晴, 罗凌虹, 关成志, et al. 固体氧化物电池Ni-YSZ燃料电极长期稳定性研究进展[J]. 陶瓷学报, 2022, 43: 759-779. |
SHAO Q, LUO L H, GUAN C Z, et al. Research progress on long-term stability of Ni-YSZ fuel electrode for solid oxide batteries[J]. Journal of Ceramic Sciences, 2022, 43: 759-779. | |
44 | LIU J, YUAN H, QIAO J, et al. Hierarchical Hollow Nanofiber Networks for High-Performance Hybrid Direct Carbon Fuel Cells[J]. Journal of Materials Chemistry A, 2017, 5: 17216-17220. |
45 | ZAINON A N, SOMALU M R, KAMARUL BAHRAIN A M, et al. Challenges in Using Perovskite-Based Anode Materials for Solid Oxide Fuel Cells with Various Fuels: A Review[J]. International Journal of Hydrogen Energy, 2023, 48: 20441-20464. |
46 | CHELMEHSARA M E, MAHMOUDIMEHR J. Techno-Economic Comparison of Anode-Supported, Cathode-Supported, and Electrolyte-Supported SOFCs[J]. International Journal of Hydrogen Energy, 2018, 43: 15521-15530. |
47 | SINGHAL S C. Progress in Tubular Solid Oxide Fuel Cell Technology[J]. ECS Proceedings Volumes, 1999, 1999-19: 39. |
48 | KUTERBEKOV K A, NIKONOV A V, BEKMYRZA K Z, et al. Classification of Solid Oxide Fuel Cells[J]. Nanomaterials, 2022, 12(7):1059. |
49 | 鲍晓囡, 张广君, 王绍荣. 阴极支撑型固体氧化物燃料电池的制备与测试[J]. 电化学, 2020, 26: 190-197. |
BAO X G, ZHANG G J, WANG S R. Preparation and Test of Cathode-supported Solid Oxide Fuel Cell[J]. Journal of Electrochemistry, 2020, 26: 190-197 | |
50 | LIU Y, HASHIMOTO S-I, NISHINO H, et al. Fabrication and Characterization of Micro-Tubular Cathode-Supported SOFC for Intermediate Temperature Operation[J]. Journal of Power Sources, 2007, 174: 95-102. |
51 | CHEN G, YOU H-X, KASAI Y, et al. Characterization of Planer Cathode-Supported SOFC Prepared by a Dual Dry Pressing Method[J]. Journal of Alloys and Compounds, 2011, 509: 5159-5162. |
52 | LIU T, LIN J, LIU T, et al. Tailoring the Pore Structure of Cathode Supports for Improving the Electrochemical Performance of Solid Oxide Fuel Cells[J]. Journal of Electroceramics, 2018, 40: 138-143. |
53 | 张英杰, 吴昊, 曾晓苑, et al. 直接碳固体氧化物燃料电池阳极材料的研究进展[J]. 材料导报, 2020, 34: 90-98. |
ZHANG Y J, WU H, ZENG X Y. Research Progress of the Anode Materials for Direct Carborn Solid Oxide Fuel Cell[J]. Materials Reports, 2020, 34: 90-98. | |
54 | HUI S, YANG D, WANG Z, et al. Metal-Supported Solid Oxide Fuel Cell Operated at 400-600°C[J]. Journal of Power Sources, 2007, 167: 336-339. |
55 | SCHILLER G, HENNE R H, LANG M, et al. Development of Vacuum Plasma Sprayed Thin-Film SOFC for Reduced Operating Temperature[J]. Fuel Cells Bulletin, 2000, 3: 7-12. |
56 | SIMNER S P, ANDERSON M D, XIA G G, et al. SOFC Performance with Fe-Cr-Mn Alloy Interconnect[J]. Journal of The Electrochemical Society, 2005, 152: A740. |
57 | DHEERADHADA V S, CAO H, ALINGER M J. Oxidation of Ferritic Stainless Steel Interconnects: Thermodynamic and Kinetic Assessment[J]. Journal of Power Sources, 2011, 196: 1975-1982. |
58 | BRANDON N P, CORCORAN D, CUMMINS D, et al. Development of Metal Supported Solid Oxide Fuel Cells for Operation at 500-600 °C[J]. Journal of Materials Engineering and Performance, 2004, 13: 253-256. |
59 | WANG Z, BERGHAUS J O, YICK S, et al. Dynamic Evaluation of Low-Temperature Metal-Supported Solid Oxide Fuel Cell Oriented to Auxiliary Power Units[J]. Journal of Power Sources, 2008, 176: 90-95. |
60 | CHOI J-J, CHOI J-H, RYU J, et al. Low Temperature Preparation and Characterization of (La,Sr)(Ga,Mg)O3-Δ Electrolyte-Based Solid Oxide Fuel Cells on Ni-Support by Aerosol Deposition[J]. Thin Solid Films, 2013, 546: 418-422. |
61 | XU N, CHEN M, HAN M. Oxidation Behavior of a Ni-Fe Support in SOFC Anode Atmosphere[J]. Journal of Alloys and Compounds, 2018, 765: 757-763. |
62 | NI W, ZHU T, CHEN X, et al. Coupling Decreased Polarization Resistance Sr0.95Ti0.3Fe0.6Ni0.1O3-Δ Cathode with Efficient Metal Supported Solid Oxide Fuel Cell[J]. Journal of Power Sources, 2021, 489: 229490. |
63 | KAI LI X L I J L I J-M X I E. Structural Stability of Ni-Fe Supported Solid Oxide Fuel Cells Based on Stress Analysis[J]. Journal of Inorganic Materials, 2019, 34: 611-617. |
[1] | 刘鑫宇, 张安安, 廖长江. 不同支撑结构的固体氧化物燃料电池数值模拟分析[J]. 储能科学与技术, 2024, 13(5): 1710-1720. |
[2] | 郑丽娜, 王文中, 贾凯杰, 邱少峰, 朱浩源, 于方永, 孟秀霞, 张津津, 杨乃涛. 3D打印技术在固体氧化物燃料电池领域的研究进展[J]. 储能科学与技术, 2021, 10(6): 1952-1962. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||