[1] |
陈海生, 李泓, 徐玉杰, 等. 2023年中国储能技术研究进展[J]. 储能科学与技术, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441.
|
|
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2023[J]. Energy Storage Science and Technology, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441.
|
[2] |
姜竹, 邹博杨, 丛琳, 等. 储热技术研究进展与展望[J]. 储能科学与技术, 2022,11(9): 2746-2771.
|
|
JIANG Z, ZOU B, CONG L, et al. Recent progress and outlook of thermal energy storage technologies[J]. Energy Storage Science and Technology, 2022, 11(9): 2746-2771.
|
[3] |
YAN T, LI T X, WANG R Z. 18 Thermochemical heat storage for solar heating and cooling systems[J]. Advances in Solar Heating and Cooling, 2016: 491-522. DOI: 10.1016/B978-0-08-100301-5.00018-7.
|
[4] |
闫霆, 王文欢, 王如竹. 化学吸附储热技术的研究现状及进展[J]. 材料导报, 2018, 32(23): 4107-4115, 4124.
|
|
YAN T, WANG W H, WANG R Z. Present status and progress of research on chemical adsorption heat storage[J]. Materials Review, 2018, 32(23): 4107-4115, 4124.
|
[5] |
葛志伟, 叶锋, LASFARGUES Mathieu, 等. 中高温储热材料的研究现状与展望[J]. 储能科学与技术, 2012, 1(2): 89-102.
|
|
GE Z W, YE F, LASFARGUES M, et al. Recent progress and prospective of medium and high temperatures thermal energy storage materials[J]. Energy Storage Science and Technology, 2012, 1(2): 89-102.
|
[6] |
ALVA G, LIN Y X, FANG G Y. An overview of thermal energy storage systems[J]. Energy, 2018, 144: 341-378. DOI: 10.1016/j.energy.2017.12.037.
|
[7] |
LEE D, KANG C. A study on development of the thermal storage type plate heat exchanger including PCM layer[J]. Journal of Mechanical Science and Technology, 2019, 33(12): 6085-6093. DOI: 10.1007/s12206-019-1152-x.
|
[8] |
SUN V, ASANAKHAM A, DEETHAYAT T, et al. Increase of power generation from solar cell module by controlling its module temperature with phase change material[J]. Journal of Mechanical Science and Technology, 2020, 34(6): 2609-2618. DOI: 10.1007/s12206-020-0336-8.
|
[9] |
CAO N V, DUONG X Q, LEE W S, et al. Effect of heat exchanger materials on the performance of adsorption chiller[J]. Journal of Mechanical Science and Technology, 2020, 34(5): 2217-2223. DOI: 10.1007/s12206-020-0443-6.
|
[10] |
YU N, WANG R Z, WANG L W. Sorption thermal storage for solar energy[J]. Progress in Energy and Combustion Science, 2013, 39(5): 489-514. DOI: 10.1016/j.pecs.2013.05.004.
|
[11] |
汪翔, 陈海生, 徐玉杰, 等. 储热技术研究进展与趋势[J]. 科学通报, 2017, 62(15): 1602-1610.
|
|
WANG X, CHEN H S, XU Y J, et al. Advances and prospects in thermal energy storage: A critical review[J]. Chinese Science Bulletin, 2017, 62(15): 1602-1610.
|
[12] |
吴娟, 龙新峰. 太阳能热化学储能研究进展[J]. 化工进展, 2014, 33(12): 3238-3245.
|
|
WU J, LONG X F. Research progress of solar thermochemical energy storage[J]. Chemical Industry and Engineering Progress, 2014, 33(12): 3238-3245.
|
[13] |
LAI Z Y, DING L W, LYU H K, et al. Experimental study on energy storage characteristics of sintered ore particle packed beds[J]. Journal of Thermal Science, 2025, 34(1): 242-253. DOI: 10.1007/s11630-024-2079-9.
|
[14] |
陈佳丽, 赵国祥, 颜亚玉, 等. 机器学习探究电子气体在沸石分子筛上的吸附[J]. 无机化学学报, 2025, 41(1): 155-164.
|
|
CHEN J L, ZHAO G X, YAN Y Y, et al. Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves[J]. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164.
|
[15] |
WU Q M, LUAN H M, XIAO F S. Targeted synthesis of zeolites from calculated interaction between zeolite structure and organic templateOpen Access[J]. National Science Review, 2022, 9(9): nwac023. DOI: 10.1093/nsr/nwac023.
|
[16] |
杨慧, 童莉葛, 尹少武, 等. 水合盐热化学储热材料的研究概述[J]. 材料导报, 2021, 35(17): 17150-17162.
|
|
YANG H, TONG L G, YIN S W, et al. A review on the salt hydrate thermochemical heat storage materials[J]. Materials Reports, 2021, 35(17): 17150-17162.
|
[17] |
张敏, 卢允庄, 王如竹. 沸石分子筛水吸附工质对的吸附性能及导热性能[J]. 太阳能学报, 2003, 24(1): 37-40.
|
|
ZHANG M, LU Y Z, WANG R Z. Experimental study on the adsorption and heat transfer performance of zeolite-water working pair[J]. Acta Energiae Solaris Sinica, 2003, 24(1): 37-40.
|
[18] |
白峰, 马鸿文. 13X沸石分子筛的比表面积和孔分布[J]. 现代地质, 2008, 22(5): 838-844.
|
|
BAI F, MA H W. Specific surface area and pore size distribution of 13X zeolite molecular sieves[J]. Geoscience, 2008, 22(5): 838-844.
|
[19] |
SAYıLGAN Ş Ç, MOBEDI M, ÜLKÜ S. Effect of regeneration temperature on adsorption equilibria and mass diffusivity of zeolite 13x-water pair[J]. Microporous and Mesoporous Materials, 2016, 224: 9-16. DOI: 10.1016/j.micromeso.2015.10.041.
|
[20] |
李威, 王秋旺, 曾敏. 水合盐基中低温热化学储热材料性能测试及数值研究[J]. 化工学报, 2021, 72(5): 2763-2772, 2330.
|
|
LI W, WANG Q W, ZENG M. Performance test and numerical study of salt hydrate-based thermochemical heat storage materials at middle-low temperature[J]. CIESC Journal, 2021, 72(5): 2763-2772, 2330.
|
[21] |
ZONDAG H, KIKKERT B, SMEDING S, et al. Prototype thermochemical heat storage with open reactor system[J]. Applied Energy, 2013, 109: 360-365. DOI: 10.1016/j.apenergy. 2013.01.082.
|
[22] |
WHITING G T, GRONDIN D, STOSIC D, et al. Zeolite-MgCl2 composites as potential long-term heat storage materials: Influence of zeolite properties on heats of water sorption[J]. Solar Energy Materials and Solar Cells, 2014, 128: 289-295. DOI: 10.1016/j.solmat.2014.05.016.
|
[23] |
WHITING G, GRONDIN D, BENNICI S, et al. Heats of water sorption studies on zeolite-MgSO4 composites as potential thermochemical heat storage materials[J]. Solar Energy Materials and Solar Cells, 2013, 112: 112-119. DOI: 10.1016/j.solmat. 2013.01.020.
|
[24] |
XU C, YU Z B, XIE Y Y, et al. Study of the hydration behavior of zeolite-MgSO4 composites for long-term heat storage[J]. Applied Thermal Engineering, 2018, 129: 250-259. DOI: 10.1016/j.applthermaleng.2017.10.031.
|
[25] |
N'TSOUKPOE K E, SCHMIDT T, RAMMELBERG H U, et al. A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage[J]. Applied Energy, 2014, 124: 1-16. DOI: 10.1016/j.apenergy.2014.02.053.
|
[26] |
张红. 沸石/硫酸镁复合吸附蓄热材料的制备及性能研究[D]. 上海: 上海电力大学, 2023. DOI: 10.27745/d.cnki.gshdl.2023.000013.
|
|
ZHANG H. Study on preparation and performance of zeolite/magnesium sulfate composite sorption heat storage materials[D]. Shanghai: Shanghai University of Electric Power, 2023. DOI: 10.27745/d.cnki.gshdl.2023.000013.
|
[27] |
谢云云. 基于水合盐复合材料的热化学储热性能实验和数值研究[D]. 北京: 华北电力大学, 2018.
|
|
XIE Y Y. Experiment and numerical study on the thermochemical heat storage based on hydrate composite materials[D]. Beijing: North China Electric Power University, 2018.
|
[28] |
XU J X, LI T X, CHAO J W, et al. High energy-density multi-form thermochemical energy storage based on multi-step sorption processes[J]. Energy, 2019, 185: 1131-1142. DOI: 10.1016/j.energy.2019.07.076.
|