储能科学与技术 ›› 2024, Vol. 13 ›› Issue (12): 4436-4451.doi: 10.19799/j.cnki.2095-4239.2024.0909

• 热化学储能专刊 • 上一篇    下一篇

中低温吸附式热化学储热研究现状与进展

马鸿坤(), 纪明希, 丁玉龙()   

  1. 伯明翰大学化工学院储能中心,英国 伯明翰 B15 2TT
  • 收稿日期:2024-09-27 修回日期:2024-11-22 出版日期:2024-12-28 发布日期:2024-12-23
  • 通讯作者: 马鸿坤,丁玉龙 E-mail:y.ding@bham.ac.uk;h.ma.5@bham.ac.uk
  • 作者简介:马鸿坤(1995—),女,博士,研究员,研究方向为热化学储能,复合储能材料开发、制备、生产与表征;工业脱碳材料制备与表征,E-mail:h.ma.5@bham.ac.uk
  • 基金资助:
    英国工程及物理科学研究委员会(EPSRC)资助项目(EP/T022981/1)

Current status and advances in the low-to-medium temperature sorption-based thermochemical heat storage

Hongkun MA(), Mingxi JI, Yulong DING()   

  1. Birmingham Centre for Energy Storage, School of Chemical Engineering, University of Birmingham, B15 2TT Birmingham, United Kingdom
  • Received:2024-09-27 Revised:2024-11-22 Online:2024-12-28 Published:2024-12-23
  • Contact: Hongkun MA, Yulong DING E-mail:y.ding@bham.ac.uk;h.ma.5@bham.ac.uk

摘要:

热化学储能由于具有储能密度高,热量损失低的优点,特别适合长时热能储存。本文综述了基于吸附反应的热化学储能材料,重点聚焦于中低温段的材料,包括物理吸附材料(如硅胶和沸石)和化学吸附材料(如水合盐)。首先,本文总结了物理吸附材料的优势与不足,分析了这些材料在实际应用中的潜在使用方式。针对水合盐类化学吸附材料,本文介绍了其反应条件、储能密度以及水合特性,并着重讨论了如何通过将水合盐负载于多孔载体来制备复合水合盐材料,以克服水合盐在应用中常见的团聚和潮解问题。本文还回顾了吸附式热化学反应器,对比了固定床、移动床反应器的特点和性能,提出了强化传热传质的办法。本文对热化学反应系统中的开式和闭式系统进行了全面分析,归纳了这两类系统在实际应用中的优缺点,探讨了各类系统在能效与性能方面的表现。此外,本文通过案例阐述了热化学系统的效率和性能,提出了系统设计思路以满足不同应用需求。此外还对热化学储热系统进行了技术经济分析,以评估系统的商业化潜力。最后,本文展望了提升吸附式热化学系统性能和降低成本的未来研究方向。

关键词: 热化学储热, 吸附材料, 水合盐, 反应器, 系统

Abstract:

Thermochemical energy storage (TCES) is particularly suitable for long-term thermal energy storage due to the advantages of high energy storage density and low heat loss. This paper reviews thermochemical energy storage materials based on sorption, focusing on materials in the low to medium temperature range, including physical adsorption materials (e.g. silica gel and zeolite) and chemical sorption materials (e.g. salt hydrate). Firstly, the properties of physical adsorption materials are summarised and their use in applications is analysed. For salt hydrate-based chemical sorption materials, their reaction conditions, energy storage densities and hydration properties are described. Then, the preparation of composite material by loading salt hydrates onto porous supports is introduced and highlighted, aiming to overcome the challenges of agglomeration and deliquescence in practical applications. Meanwhile, the design of thermochemical reactors has been reviewed. The characteristics and performance of fixed bed and moving bed reactors were also compared, and further suggestions for improving heat and mass transfer were discussed. An analysis of open and closed systems was also summarised in terms of advantages and disadvantages. Further discussions on the performance of each type of system including energy efficiency, performance and system design ideas to meet different application requirements are proposed. A techno-economic analysis of thermochemical heat storage is also carried out to assess the commercialisation potential of various systems. Finally, future research directions to improve the performance and reduce the cost of adsorption-based thermochemical systems are outlined.

Key words: thermochemical heat storage, sorption material, salt hydrate, reactor, system

中图分类号: