储能科学与技术 ›› 2024, Vol. 13 ›› Issue (12): 4436-4451.doi: 10.19799/j.cnki.2095-4239.2024.0909
收稿日期:
2024-09-27
修回日期:
2024-11-22
出版日期:
2024-12-28
发布日期:
2024-12-23
通讯作者:
马鸿坤,丁玉龙
E-mail:y.ding@bham.ac.uk;h.ma.5@bham.ac.uk
作者简介:
马鸿坤(1995—),女,博士,研究员,研究方向为热化学储能,复合储能材料开发、制备、生产与表征;工业脱碳材料制备与表征,E-mail:h.ma.5@bham.ac.uk;
基金资助:
Hongkun MA(), Mingxi JI, Yulong DING(
)
Received:
2024-09-27
Revised:
2024-11-22
Online:
2024-12-28
Published:
2024-12-23
Contact:
Hongkun MA, Yulong DING
E-mail:y.ding@bham.ac.uk;h.ma.5@bham.ac.uk
摘要:
热化学储能由于具有储能密度高,热量损失低的优点,特别适合长时热能储存。本文综述了基于吸附反应的热化学储能材料,重点聚焦于中低温段的材料,包括物理吸附材料(如硅胶和沸石)和化学吸附材料(如水合盐)。首先,本文总结了物理吸附材料的优势与不足,分析了这些材料在实际应用中的潜在使用方式。针对水合盐类化学吸附材料,本文介绍了其反应条件、储能密度以及水合特性,并着重讨论了如何通过将水合盐负载于多孔载体来制备复合水合盐材料,以克服水合盐在应用中常见的团聚和潮解问题。本文还回顾了吸附式热化学反应器,对比了固定床、移动床反应器的特点和性能,提出了强化传热传质的办法。本文对热化学反应系统中的开式和闭式系统进行了全面分析,归纳了这两类系统在实际应用中的优缺点,探讨了各类系统在能效与性能方面的表现。此外,本文通过案例阐述了热化学系统的效率和性能,提出了系统设计思路以满足不同应用需求。此外还对热化学储热系统进行了技术经济分析,以评估系统的商业化潜力。最后,本文展望了提升吸附式热化学系统性能和降低成本的未来研究方向。
中图分类号:
马鸿坤, 纪明希, 丁玉龙. 中低温吸附式热化学储热研究现状与进展[J]. 储能科学与技术, 2024, 13(12): 4436-4451.
Hongkun MA, Mingxi JI, Yulong DING. Current status and advances in the low-to-medium temperature sorption-based thermochemical heat storage[J]. Energy Storage Science and Technology, 2024, 13(12): 4436-4451.
表3
几种典型的水合盐基复合材料"
复合材料工作对 | 制备方法 | 脱水温度/℃ | 水合温度/℃ | 能量密度 | 循环次数 | 参考文献 |
---|---|---|---|---|---|---|
沸石13X/MgCl2 | 浸渍法 | 200 | 30 | 1368 J/g | 20 | [ |
氧化石墨烯气凝胶/MgCl2 | 水热和冷冻干燥 | — | — | 1598 J/g | — | [ |
膨胀石墨/MgSO4 | 浸渍法 | 120 | — | 718.90 J/g | — | [ |
硅胶/CaCl2 | 浸渍法 | 80 | 30 | 1080.51 J/g | 10 | [ |
活性氧化铝/MgSO4 | 浸渍法 | 200 | 25~40 | 395.13 J/g | — | [ |
膨胀石墨/SrBr2 | 湿法浸渍法 | 150 | — | 约 600 J/g | — | [ |
金属有机框架材料MOF/SrBr2 | 湿法浸渍法 | 80 | 30 | 233 kWh/m3 | 10 | [ |
蛭石/LiCl | 浸渍法 | 85 | 35 | 1890~2150 J/g | 14 | [ |
硅胶/MgSO4 | 雾化喷涂法 | 110~130 | 30~50 | 603.36 J/g | 15 | [ |
1 | LEONZIO G. Solar systems integrated with absorption heat pumps and thermal energy storages: State of art[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 492-505. DOI: 10.1016/j.rser.2016.11.117. |
2 | N'TSOUKPOE K E, LIU H, LE PIERRÈS N, et al. A review on long-term sorption solar energy storage[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2385-2396. DOI: 10.1016/j.rser.2009.05.008. |
3 | 闫霆, 王文欢, 王如竹. 化学吸附储热技术的研究现状及进展[J]. 材料导报, 2018, 32(23): 4107-4115, 4124. DOI: 10.11896/j.issn.1005-023X.2018.23.012. |
YAN T, WANG W H, WANG R Z. Present status and progress of research on chemical adsorption heat storage[J]. Materials Reports, 2018, 32(23): 4107-4115, 4124. DOI: 10.11896/j.issn.1005-023X.2018.23.012. | |
4 | YANG H, TONG L G, YIN S W, et al. A review on the salt hydrate thermochemical heat storage materials[J]. Materials Reports, 2021, 35(17): 17150-17162. |
5 | KUZNIK F, JOHANNES K, OBRECHT C, et al. A review on recent developments in physisorption thermal energy storage for building applications[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 576-586. DOI: 10.1016/j.rser.2018.06.038. |
6 | AYDIN D, CASEY S P, RIFFAT S. The latest advancements on thermochemical heat storage systems[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 356-367. DOI: 10.1016/j.rser.2014.08.054. |
7 | ABEDIN A H. A critical review of thermochemical energy storage systems[J]. The Open Renewable Energy Journal, 2011, 4(1): 42-46. DOI: 10.2174/1876387101004010042. |
8 | KANT K, PITCHUMANI R. Advances and opportunities in thermochemical heat storage systems for buildings applications[J]. Applied Energy, 2022, 321: 119299. DOI: 10.1016/j.apenergy. 2022.119299. |
9 | ZHANG Y N, WANG R Z. Sorption thermal energy storage: Concept, process, applications and perspectives[J]. Energy Storage Materials, 2020, 27: 352-369. DOI: 10.1016/j.ensm. 2020.02.024. |
10 | HUA W S, YAN H F, ZHANG X L, et al. Review of salt hydrates-based thermochemical adsorption thermal storage technologies[J]. Journal of Energy Storage, 2022, 56: 106158. DOI: 10.1016/j.est.2022.106158. |
11 | SCAPINO L, ZONDAG H A, VAN BAEL J, et al. Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale[J]. Applied Energy, 2017, 190: 920-948. DOI: 10.1016/j.apenergy. 2016. 12.148. |
12 | TATSIDJODOUNG P, LE PIERRÈS N, LUO L G. A review of potential materials for thermal energy storage in building applications[J]. Renewable and Sustainable Energy Reviews, 2013, 18: 327-349. DOI: 10.1016/j.rser.2012.10.025. |
13 | QIU Y N, YANG Y, YANG N, et al. Thermochemical energy storage using silica gel: Thermal storage performance and nonisothermal kinetic analysis[J]. Solar Energy Materials and Solar Cells, 2023, 251: 112153. DOI: 10.1016/j.solmat. 2022.112153. |
14 | YU N, WANG R Z, WANG L W. Sorption thermal storage for solar energy[J]. Progress in Energy and Combustion Science, 2013, 39(5): 489-514. DOI: 10.1016/j.pecs.2013.05.004. |
15 | KOLEY S, BAO H S, ROSKILLY A P, et al. Experimental parametric evaluation of adsorption characteristics for silica gel - water based open-bed system for seasonal thermal energy storage[J]. Journal of Energy Storage, 2024, 89: 111812. DOI: 10.1016/j.est.2024.111812. |
16 | METTE B, KERSKES H, DRÜCK H, et al. Experimental and numerical investigations on the water vapor adsorption isotherms and kinetics of binderless zeolite 13X[J]. International Journal of Heat and Mass Transfer, 2014, 71: 555-561. DOI: 10.1016/j.ijheatmasstransfer.2013.12.061. |
17 | TSO C Y, CHAO C Y H. Activated carbon, silica-gel and calcium chloride composite adsorbents for energy efficient solar adsorption cooling and dehumidification systems[J]. International Journal of Refrigeration, 2012, 35(6): 1626-1638. DOI: 10.1016/j.ijrefrig.2012.05.007. |
18 | TSO C Y, CHAO C Y H, FU S C. Performance analysis of a waste heat driven activated carbon based composite adsorbent–Water adsorption chiller using simulation model[J]. International Journal of Heat and Mass Transfer, 2012, 55(25/26): 7596-7610. DOI: 10.1016/j.ijheatmasstransfer.2012.07.064. |
19 | LIU H Z, NAGANO K, SUGIYAMA D, et al. Honeycomb filters made from mesoporous composite material for an open sorption thermal energy storage system to store low-temperature industrial waste heat[J]. International Journal of Heat and Mass Transfer, 2013, 65: 471-480. DOI: 10.1016/j.ijheatmasstransfer. 2013.06.021. |
20 | RISTIĆ A, LOGAR N Z, HENNINGER S K, et al. The performance of small-pore microporous aluminophosphates in low-temperature solar energy storage: The structure–property relationship[J]. Advanced Functional Materials, 2012, 22(9): 1952-1957. DOI: 10.1002/adfm.201102734. |
21 | MEEK S T, GREATHOUSE J A, ALLENDORF M D. Metal-organic frameworks: A rapidly growing class of versatile nanoporous materials[J]. Advanced Materials, 2011, 23(2): 249-267. DOI: 10.1002/adma.201002854. |
22 | MOULAKHNIF K, AIT OUSALEH H, SAIR S, et al. Renewable approaches to building heat: Exploring cutting-edge innovations in thermochemical energy storage for building heating[J]. Energy and Buildings, 2024, 318: 114421. DOI: 10.1016/j.enbuild. 2024.114421. |
23 | 翁立奎, 张叶龙, 姜琳, 等. 基于水合盐的热化学吸附储热技术研究进展[J]. 储能科学与技术, 2020, 9(6): 1729-1736. DOI: 10.19799/j.cnki.2095-4239.2020.0168. |
WENG L K, ZHANG Y L, JIANG L, et al. Research progress on thermochemical adsorption heat storage technology based on hydrate[J]. Energy Storage Science and Technology, 2020, 9(6): 1729-1736. DOI: 10.19799/j.cnki.2095-4239.2020.0168. | |
24 | HAO M S, LI H Z, WANG W T, et al. Research progress of thermochemical heat storage materials of hydrated salts[J]. Energy Storage Science and Technology, 2020, 9: 791. DOI: 10.19799/J.CNKI.2095-4239.2019.0223. |
25 | Corporation O C. Calcium chloride—A guide to physical properties[R/OL]. [2024-09-22] https://ingredi.com/content/pdfs/Briners_Choice_Calcium_Chloride_Physical_Properties.pdf?srsltid=AfmBOoq8h28uNkiWFsyaD3FpRqPQ_aKLgacUnbDqFLT fI8O9TToyc0yu. |
26 | PENG C, CHEN L, TANG M J. A database for deliquescence and efflorescence relative humidities of compounds with atmospheric relevance[J]. Fundamental Research, 2022, 2(4): 578-587. DOI: 10.1016/j.fmre.2021.11.021. |
27 | VAN ESSEN V M, COT GORES J, BLEIJENDAAL L P J, et al. Characterization of salt hydrates for compact seasonal thermochemical storage[C]//ASME 2009 3rd International Conference on Energy Sustainability Collocated with the Heat Transfer and InterPACK09 Conferences, July 19–23, 2009, San Francisco, California, USA. 2010: 825-830. DOI: 10.1115/ES2009-90289. |
28 | DONKERS P A J. Experimental study on thermochemical heat storage materials[D]. The Netherlands: Technische Universiteit Eindhoven, 2015. |
29 | DONKERS P A J, SÖGÜTOGLU L C, HUININK H P, et al. A review of salt hydrates for seasonal heat storage in domestic applications[J]. Applied Energy, 2017, 199: 45-68. DOI: 10.1016/j.apenergy.2017.04.080. |
30 | GLASSER L. Thermodynamics of inorganic hydration and of humidity control, with an extensive database of salt hydrate pairs[J]. Journal of Chemical & Engineering Data, 2014, 59(2): 526-530. DOI: 10.1021/je401077x. |
31 | SÖGÜTOGLU L C, STEIGER M, HOUBEN J, et al. Understanding the hydration process of salts: The impact of a nucleation barrier[J]. Crystal Growth & Design, 2019, 19(4): 2279-2288. DOI: 10.1021/acs.cgd.8b01908. |
32 | ABRAHAMS I, VORDEMVENNE E. Strontium dibromide hexahydrate[J]. Acta Crystallographica Section C Crystal Structure Communications, 1995, 51(2): 183-185. DOI: 10.1107/s0108270194010796. |
33 | N'TSOUKPOE K E, SCHMIDT T, RAMMELBERG H U, et al. A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage[J]. Applied Energy, 2014, 124: 1-16. DOI: 10.1016/j.apenergy.2014.02.053. |
34 | LAHMIDI H, MAURAN S, GOETZ V. Definition, test and simulation of a thermochemical storage process adapted to solar thermal systems[J]. Solar Energy, 2006, 80(7): 883-893. DOI: 10.1016/j.solener.2005.01.014. |
35 | MAURAN S, LAHMIDI H, GOETZ V. Solar heating and cooling by a thermochemical process. First experiments of a prototype storing 60kWh by a solid/gas reaction[J]. Solar Energy, 2008, 82(7): 623-636. DOI: 10.1016/j.solener.2008.01.002. |
36 | MARIAS F, NEVEU P, TANGUY G, et al. Thermodynamic analysis and experimental study of solid/gas reactor operating in open mode[J]. Energy, 2014, 66: 757-765. DOI: 10.1016/j.energy.2014.01.101. |
37 | MICHEL B, MAZET N, NEVEU P. Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy: Global performance[J]. Applied Energy, 2014, 129: 177-186. DOI: 10.1016/j.apenergy.2014.04.073. |
38 | ROELANDS M, CUYPERS R, KRUIT K D, et al. Preparation & characterization of sodium sulfide hydrates for application in thermochemical storage systems[J]. Energy Procedia, 2015, 70: 257-266. DOI: 10.1016/j.egypro.2015.02.122. |
39 | JIANG J J, CHAN A, ALI S, et al. Hydrogen sulfide—mechanisms of toxicity and development of an antidote[J]. Scientific Reports, 2016, 6: 20831. DOI: 10.1038/srep20831. |
40 | NASH D B. Infrared reflectance spectra of Na2S with contaminant Na2CO3: Effects of adsorbed H2O and CO2 and relation to studies of io[J]. Icarus, 1988, 74(2): 365-368. DOI: 10.1016/0019-1035(88)90049-8. |
41 | WAGMAN D, EVANS W, PARKER V, et al. The NBS tables of chemical thermodynamic propertiesselected values for inorganic and C[J]. Joural of Physical Chemical Reference Data, 1982, 11: 2-145. |
42 | YU N, WANG R Z, LU Z S, et al. Evaluation of a three-phase sorption cycle for thermal energy storage[J]. Energy, 2014, 67: 468-478. DOI: 10.1016/j.energy.2013.12.044. |
43 | LIU X Y, WANG W W, XIE S T, et al. Performance characterization and application of composite adsorbent LiCl@ACFF for moisture harvesting[J]. Scientific Reports, 2021, 11(1): 14412. DOI: 10.1038/s41598-021-93784-7. |
44 | YU N, WANG R Z, LU Z S, et al. Study on consolidated composite sorbents impregnated with LiCl for thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2015, 84: 660-670. DOI: 10.1016/j.ijheatmasstransfer.2015.01.065. |
45 | LIU H, EDEM N K, NOLWENN L P, et al. Evaluation of a seasonal storage system of solar energy for house heating using different absorption couples[J]. Energy Conversion and Management, 2011, 52(6): 2427-2436. DOI: 10.1016/j.enconman.2010.12.049. |
46 | WANG H M, LIU X, LIU X, et al. Fluidisable mesoporous silica composites for thermochemical energy storage[J]. Energy, 2023, 275: 127255. DOI: 10.1016/j.energy.2023.127255. |
47 | CHAO J W, XU J X, BAI Z Y, et al. Integrated heat and cold storage enabled by high-energy-density sorption thermal battery based on zeolite/MgCl2 composite sorbent[J]. Journal of Energy Storage, 2023, 64: 107155. DOI: 10.1016/j.est.2023.107155. |
48 | ZHANG Q Y, WU Y F, DONG S H, et al. Development of activated carbon/CaCl2 composites for seasonal thermochemical energy storage: Effect of pore structure[J]. Journal of Energy Storage, 2024, 97: 112697. DOI: 10.1016/j.est.2024.112697. |
49 | CHEN Z W, ZHANG Y N, ZHANG Y, et al. A study on vermiculite-based salt mixture composite materials for low-grade thermochemical adsorption heat storage[J]. Energy, 2023, 278: 127986. DOI: 10.1016/j.energy.2023.127986. |
50 | CAMMARATA A, VERDA V, SCIACOVELLI A, et al. Hybrid strontium bromide-natural graphite composites for low to medium temperature thermochemical energy storage: Formulation, fabrication and performance investigation[J]. Energy Conversion and Management, 2018, 166: 233-240. DOI: 10.1016/j.enconman.2018.04.031. |
51 | XU J X, LI T X, CHAO J W, et al. High energy-density multi-form thermochemical energy storage based on multi-step sorption processes[J]. Energy, 2019, 185: 1131-1142. DOI: 10.1016/j.energy.2019.07.076. |
52 | ZHOU H, ZHANG D. Effect of graphene oxide aerogel on dehydration temperature of graphene oxide aerogel stabilized MgCl2⋅6H2O composites[J]. Solar Energy, 2019, 184: 202-208. DOI: 10.1016/j.solener.2019.03.076. |
53 | MIAO Q, ZHANG Y L, JIA X, et al. MgSO4-expanded graphite composites for mass and heat transfer enhancement of thermochemical energy storage[J]. Solar Energy, 2021, 220: 432-439. DOI: 10.1016/j.solener.2021.03.008. |
54 | COURBON E, D'ANS P, PERMYAKOVA A, et al. Further improvement of the synthesis of silica gel and CaCl2 composites: Enhancement of energy storage density and stability over cycles for solar heat storage coupled with space heating applications[J]. Solar Energy, 2017, 157: 532-541. DOI: 10.1016/j.solener. 2017.08.034. |
55 | D'ANS P, COURBON E, PERMYAKOVA A, et al. A new strontium bromide MOF composite with improved performance for solar energy storage application[J]. Journal of Energy Storage, 2019, 25: 100881. DOI: 10.1016/j.est.2019.100881. |
56 | BRANCATO V, GORDEEVA L G, SAPIENZA A, et al. Experimental characterization of the LiCl/vermiculite composite for sorption heat storage applications[J]. International Journal of Refrigeration, 2019, 105: 92-100. DOI: 10.1016/j.ijrefrig. 2018. 08.006. |
57 | YANG H, WANG C C, ZHANG Y L, et al. Experimental investigation of a thermochemical energy storage system based on MgSO4-silica gel for building heating: Adsorption/desorption performance testing and system optimization[J]. Energy Conversion and Management, 2024, 301: 118000. DOI: 10.1016/j.enconman.2023.118000. |
58 | 葛继翔, 纪明希, 丁玉龙, 等. 水合盐热化学反应器参数优化与供暖应用案例分析[J]. 储能科学与技术, 2023, 12(12): 3799-3807. DOI: 10.19799/j.cnki.2095-4239.2023.0686. |
GE J X, JI M X, DING Y L, et al. Parameter optimization of a thermochemical reactor using salt hydrates: A case study of heating application[J]. Energy Storage Science and Technology, 2023, 12(12): 3799-3807. DOI: 10.19799/j.cnki.2095-4239. 2023.0686. | |
59 | SOLÉ A, MARTORELL I, CABEZA L F. State of the art on gas–solid thermochemical energy storage systems and reactors for building applications[J]. Renewable and Sustainable Energy Reviews, 2015, 47: 386-398. DOI: 10.1016/j.rser.2015.03.077. |
60 | 罗伊默, 芮金金, 徐薇, 等. 热化学储热反应器内水合盐物性调控及传热传质优化研究进展[J]. 储能科学与技术, 2021, 10(4): 1273-1284. DOI: 10.19799/j.cnki.2095-4239.2021.0026. |
LUO Y M, RUI J J, XU W, et al. Research progress on physical property control and heat and mass transfer optimization of hydrated salt in thermochemical heat storage reactor[J]. Energy Storage Science and Technology, 2021, 10(4): 1273-1284. DOI: 10.19799/j.cnki.2095-4239.2021.0026. | |
61 | AYDIN D, CASEY S P, CHEN X J, et al. Novel "open-sorption pipe" reactor for solar thermal energy storage[J]. Energy Conversion and Management, 2016, 121: 321-334. DOI: 10.1016/j.enconman.2016.05.045. |
62 | LI W, KLEMEŠ J J, WANG Q W, et al. Salt hydrate–based gas-solid thermochemical energy storage: Current progress, challenges, and perspectives[J]. Renewable and Sustainable Energy Reviews, 2022, 154: 111846. DOI: 10.1016/j.rser. 2021.111846. |
63 | FARCOT L, LE PIERRÈS N, FOURMIGUÉ J F. Experimental investigation of a moving-bed heat storage thermochemical reactor with SrBr2/H2O couple[J]. Journal of Energy Storage, 2019, 26: 101009. DOI: 10.1016/j.est.2019.101009. |
64 | WYTTENBACH J, BOUGARD J, DESCY G, et al. Performances and modelling of a circular moving bed thermochemical reactor for seasonal storage[J]. Applied Energy, 2018, 230: 803-815. DOI: 10.1016/j.apenergy.2018.09.008. |
65 | CLARK R J, MEHRABADI A, FARID M. State of the art on salt hydrate thermochemical energy storage systems for use in building applications[J]. Journal of Energy Storage, 2020, 27: 101145. DOI: 10.1016/j.est.2019.101145. |
66 | MARIE L F, LANDINI S, BAE D, et al. Advances in thermochemical energy storage and fluidised beds for domestic heat[J]. Journal of Energy Storage, 2022, 53: 105242. DOI: 10.1016/j.est.2022.105242. |
67 | ZONDAG H, KIKKERT B, SMEDING S, et al. Prototype thermochemical heat storage with open reactor system[J]. Applied Energy, 2013, 109: 360-365. DOI: 10.1016/j.apenergy. 2013.01.082. |
68 | LI T X, WANG R Z, KIPLAGAT J K, et al. Performance analysis of an integrated energy storage and energy upgrade thermochemical solid–gas sorption system for seasonal storage of solar thermal energy[J]. Energy, 2013, 50: 454-467. DOI: 10.1016/j.energy.2012.11.043. |
69 | FOPAH-LELE A, ROHDE C, NEUMANN K, et al. Lab-scale experiment of a closed thermochemical heat storage system including honeycomb heat exchanger[J]. Energy, 2016, 114: 225-238. DOI: 10.1016/j.energy.2016.08.009. |
70 | LI W, ZHANG L J, LING X. Thermo-economic assessment of salt hydrate-based thermochemical heat transformer system: Heat upgrade for matching domestic hot water production[J]. Energy Conversion and Management, 2023, 277: 116644. DOI: 10.1016/j.enconman.2022.116644. |
71 | BÖHM H, LINDORFER J. Techno-economic assessment of seasonal heat storage in district heating with thermochemical materials[J]. Energy, 2019, 179: 1246-1264. DOI: 10.1016/j.energy.2019.04.177. |
72 | TRAN T V, ONI A O, GEMECHU E, et al. Developing a techno-economic model to evaluate the cost performance of a zeolite 13X-based space heating system[J]. Energy Conversion and Management, 2021, 244: 114325. DOI: 10.1016/j.enconman. 2021.114325. |
73 | FUJII S, KANEMATSU Y, KIKUCHI Y, et al. Techno economic analysis of thermochemical energy storage and transport system utilizing "zeolite boiler": Case study in Sweden[J]. Energy Procedia, 2018, 149: 102-111. DOI: 10.1016/j.egypro. 2018. 08.174. |
[1] | 黎耀康, 杨海东, 徐康康, 蓝昭宇, 章润楠. 基于加权UMAP和改进BLS的锂电池温度预测[J]. 储能科学与技术, 2024, 13(9): 3006-3015. |
[2] | 钟逸, 冷彦, 陈思慧, 李培义, 邹智, 刘洋, 万佳雨. 基于大语言模型RAG架构的电池加速研究:现状与展望[J]. 储能科学与技术, 2024, 13(9): 3214-3225. |
[3] | 朱振威, 苗嘉伟, 祝夏雨, 王晓旭, 邱景义, 张浩. 基于机器学习方法的锂电池剩余寿命预测研究进展[J]. 储能科学与技术, 2024, 13(9): 3134-3149. |
[4] | 栗占伟, 樊东方, 曾超, 何雯倩, 何金. 考虑风光消纳的储能系统容量优化配置及运行策略研究[J]. 储能科学与技术, 2024, 13(8): 2713-2725. |
[5] | 刘云汉, 王亮, 张双, 林曦鹏, 葛志伟, 白亚开, 林霖, 王艺斐, 陈海生. 基于圆柱封装单元的水合盐相变储热填充床的储释特性实验研究[J]. 储能科学与技术, 2024, 13(8): 2623-2633. |
[6] | 李畅, 郑伟波, 朱帅, 姜云文, 明平文. 基于模型的燃料电池空气子系统动态过程研究[J]. 储能科学与技术, 2024, 13(8): 2580-2588. |
[7] | 朱文韬, 周杨, 徐艺敏, 施涛. 电池储能技术在新能源发电系统中的应用与优化[J]. 储能科学与技术, 2024, 13(8): 2737-2739. |
[8] | 代宇涵, 刘春, 周朋, 周俊鹏, 向思屿. 双碳背景下电力系统储能技术的应用与研究进展[J]. 储能科学与技术, 2024, 13(8): 2772-2774. |
[9] | 寇正, 王真龙. 储能设备在电力物联网领域中的作用效果分析[J]. 储能科学与技术, 2024, 13(8): 2785-2787. |
[10] | 许利君, 许利红, 宋方宇轩. 电化学储能电站的系统故障监测与诊断分析[J]. 储能科学与技术, 2024, 13(8): 2788-2790. |
[11] | 赵晓军, 王颖超, 陈猛, 杨鹏, 安占旺, 刘建利, 吴迪. 动力电池系统内模组汇流排可靠性浅析[J]. 储能科学与技术, 2024, 13(7): 2450-2458. |
[12] | 聂璐璐, 原立格. 智能电子控制系统在低温电池管理中的应用与优化[J]. 储能科学与技术, 2024, 13(7): 2432-2434. |
[13] | 黄思远, 王晨, 梁婷, 姜竹, 李佳静, 折晓会, 张小松. 液态空气储能耦合综合能源系统热电联储联供优化配置研究[J]. 储能科学与技术, 2024, 13(6): 1929-1939. |
[14] | 熊阳阳, 于艾清, 王育飞, 薛花. 基于多场景多重不确定性的含混氢天然气的综合能源系统运行优化[J]. 储能科学与技术, 2024, 13(6): 1888-1899. |
[15] | 甄箫斐, 王贝贝, 张小虎, 孙一铭, 曹文炅, 董缇. 锂电池储能系统热失控气体生成及扩散规律研究[J]. 储能科学与技术, 2024, 13(6): 1986-1994. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||