储能科学与技术 ›› 2025, Vol. 14 ›› Issue (10): 3666-3676.doi: 10.19799/j.cnki.2095-4239.2025.0427

• 储能材料与器件 • 上一篇    下一篇

Ti0.9Zr0.11.1Mn1.2-x Cr0.8Ga x 合金的储氢性能研究

杨斌1(), 张勉恒1, 赵长颖2(), 龙霞1()   

  1. 1.上海交通大学中英国际低碳学院,上海 201306
    2.上海交通大学工程热物理研究所,上海 200240
  • 收稿日期:2025-05-07 修回日期:2025-06-03 出版日期:2025-10-28 发布日期:2025-10-20
  • 通讯作者: 赵长颖,龙霞 E-mail:sjtuyangbin@sjtu.edu.cn;changying.zhao@sjtu.edu.cn;x.long@sjtu.edu.cn
  • 作者简介:杨斌(1999—),男,硕士研究生,研究方向为固态储氢,E-mail:sjtuyangbin@sjtu.edu.cn
  • 基金资助:
    国家重点研发项目(2023YFB4005400)

Study on the hydrogen storage properties of (Ti0.9Zr0.1)1.1Mn1.2-x Cr0.8Ga x alloys

Bin YANG1(), Mianheng ZHANG1, Changying ZHAO2(), Xia LONG1()   

  1. 1.China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
    2.Institute of Engineering Thermophysics, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2025-05-07 Revised:2025-06-03 Online:2025-10-28 Published:2025-10-20
  • Contact: Changying ZHAO, Xia LONG E-mail:sjtuyangbin@sjtu.edu.cn;changying.zhao@sjtu.edu.cn;x.long@sjtu.edu.cn

摘要:

镓(Ga)作为一种与多种元素具有负混合焓的液态金属,能在温和条件下与多种金属形成高熵合金。本研究将Ga引入C14 Laves相高熵合金中,采用真空感应熔炼技术制备了(Ti0.9Zr0.1)1.1Mn1.2-x Cr0.8Ga x (x=0, 0.1, 0.2)合金。结合理论计算与测试实验研究了Ga替代Mn对合金微观结构及储氢性能的影响。理论计算显示,Ga掺杂使合金的原子尺寸差异从7.54降至7.39、混合焓降至-9.17 kJ/mol,合金相稳定性提升。价电子浓度(VEC)分析表明合金在常温下具有高效储放氢能力。实验结果表明,合成的合金均具有单一的C14 Laves相结构,合金内各元素分布均匀。Ga对Mn的替代使晶胞体积从165.52 Å3增至167.25 Å3 (1 Å=0.1 nm),导致吸放氢平台压力和滞后因子大幅下降,合金动力学性能显著提升,90%最大储氢量的吸氢时间缩短至50 s内。(Ti0.9Zr0.1)1.1Mn1.1Cr0.8Ga0.1合金表现出最优的综合吸放氢性能,最大储氢量达1.81%(质量分数),293 K条件下吸放氢平台压力分别为0.9 MPa和0.86 MPa。该合金在30次吸放氢后容量保持率达96%,且晶胞仍保持单一C14 Laves相,循环性能优异。本研究揭示了Ga在高熵储氢合金中的作用机理,为Ga在储氢领域的应用提供了理论依据。

关键词: 镓, 储氢合金, 储氢性能, C14 Laves相

Abstract:

Gallium (Ga), as a liquid metal with negative mixing enthalpies with multiple elements, can form high-entropy alloys (HEAs) with various metals under mild conditions. In this study, Ga was introduced into C14 Laves phase HEAs. (Ti0.9Zr0.1)1.1Mn1.2-x Cr0.8Ga x alloys (x = 0, 0.1, 0.2) alloys were fabricated using vacuum induction melting technology. Through a combination of theoretical calculations and experimental tests, the effects of the Ga substitution for Mn on the microstructure and hydrogen storage properties were systematically investigated. Theoretical calculations revealed that Ga doping reduced the atomic size difference from 7.54 to 7.39 and lowered the mixing enthalpy to -9.17 kJ/mol, thereby improving the phase stability. The valence electron concentration analysis suggested an efficient hydrogen absorption/desorption performance at ambient temperature. The experimental results demonstrated that all alloys exhibited single-phase C14 Laves structures with a homogeneous elemental distribution. Ga substitution for Mn increased the unit cell volume from 165.52 Å3 to 167.25 Å3, significantly reducing the hydrogen absorption/desorption plateau pressures and hysteresis factors while improving the kinetic performance. The time required to reach 90% of the maximum hydrogen capacity was shortened to less than 50 s. Among the tested alloys, (Ti0.9Zr0.1)1.1Mn1.1Cr0.8Ga0.1 displayed the optimal hydrogen storage properties, achieving a maximum capacity of 1.81% (weight fraction) with absorption/desorption plateau pressures of 0.9 MPa and 0.86 MPa at 293 K, respectively. This alloy retained 96% of its initial capacity after 30 cycles while maintaining a single C14 Laves phase, demonstrating exceptional cycling stability. This study clarifies the mechanistic role of Ga in high-entropy hydrogen storage alloys and provides theoretical guidance for Ga applications in hydrogen storage materials.

Key words: gallium, hydrogen storage alloy, hydrogen storage properties, C14 Laves phase

中图分类号: