[1] |
REARDON H, HANLON J M, HUGHES R W, et al. Emerging concepts in solid-state hydrogen storage: The role of nanomaterials design[J]. Energy & Environmental Science, 2012, 5(3): 5951-5979. DOI: 10.1039/C2EE03138H.
|
[2] |
LIMA E C, HOSSEINI-BANDEGHARAEI A, MORENO-PIRAJÁN J C, et al. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't Hoof equation for calculation of thermodynamic parameters of adsorption[J]. Journal of Molecular Liquids, 2019, 273: 425-434. DOI: 10.1016/j.molliq.2018.10.048.
|
[3] |
LUO L, CHEN L P, LI L R, et al. High-entropy alloys for solid hydrogen storage: A review[J]. International Journal of Hydrogen Energy, 2024, 50: 406-430. DOI: 10.1016/j.ijhydene.2023.07.146.
|
[4] |
YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. DOI: 10.1002/adem.200300567.
|
[5] |
CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering: A, 2004, 375: 213-218. DOI: 10.1016/j.msea.2003.10.257.
|
[6] |
YANG F S, WANG J, ZHANG Y, et al. Recent progress on the development of high entropy alloys (HEAs) for solid hydrogen storage: A review[J]. International Journal of Hydrogen Energy, 2022, 47(21): 11236-11249. DOI: 10.1016/j.ijhydene.2022.01.141.
|
[7] |
CHENG B, KONG L J, LI Y K, et al. Hydrogen desorption kinetics of V30Nb10(TixCr1- x)60 high-entropy alloys[J]. Metals, 2023, 13(2): 230. DOI: 10.3390/met13020230.
|
[8] |
ZHANG X, LI B Q, WANG L, et al. Hydrogen storage properties of AB2 type Ti-Zr-Cr-Mn-Fe based alloys[J]. International Journal of Hydrogen Energy, 2024, 51: 193-201. DOI: 10.1016/j.ijhydene. 2023.11.045.
|
[9] |
KUMAR A, YADAV T P, MUKHOPADHYAY N K. Notable hydrogen storage in Ti-Zr-V-Cr-Ni high entropy alloy[J]. International Journal of Hydrogen Energy, 2022, 47(54): 22893-22900. DOI: 10.1016/j.ijhydene.2022.05.107.
|
[10] |
ZHOU P P, CAO Z M, XIAO X Z, et al. Study on low-vanadium Ti-Zr-Mn-Cr-V based alloys for high-density hydrogen storage[J]. International Journal of Hydrogen Energy, 2022, 47(3): 1710-1722. DOI: 10.1016/j.ijhydene.2021.10.106.
|
[11] |
HUANG T Z, WU Z, SUN G X, et al. Microstructure and hydrogen storage characteristics of TiMn2- xVx alloys[J]. Intermetallics, 2007, 15(4): 593-598. DOI: 10.1016/j.intermet.2006.10.035.
|
[12] |
ZAVABETI A, OU J Z, CAREY B J, et al. A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides[J]. Science, 2017, 358(6361): 332-335. DOI: 10.1126/science.aao4249.
|
[13] |
TAKEUCHI A, INOUE A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions, 2005, 46: 2817-2829. DOI: 10.2320/MATERTRANS.46.2817.
|
[14] |
CAO G H, LIANG J J, GUO Z L, et al. Liquid metal for high-entropy alloy nanoparticles synthesis[J]. Nature, 2023, 619(7968): 73-77. DOI: 10.1038/s41586-023-06082-9.
|
[15] |
ZHANG Y, ZHOU Y J, LIN J P, et al. Solid-solution phase formation rules for multi-component alloys[J]. Advanced Engineering Materials, 2008, 10(6): 534-538. DOI: 10.1002/adem.200700240.
|
[16] |
MISHRA S S, MUKHOPADHYAY S, YADAV T P, et al. Synthesis and characterization of hexanary Ti-Zr-V-Cr-Ni-Fe high-entropy laves phase[J]. Journal of Materials Research, 2019, 34(5): 807-818. DOI: 10.1557/jmr.2018.502.
|
[17] |
YANG X, ZHANG Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys[J]. Materials Chemistry and Physics, 2012, 132(2/3): 233-238. DOI: 10.1016/j.matchemphys. 2011.11.021.
|
[18] |
XIA S Q, YANG W P, ZHANG Y. Prediction of the optimal hydrogen storage in high entropy alloys[J]. Materials Chemistry and Physics, 2024, 328: 130010. DOI: 10.1016/j.matchemphys. 2024.130010.
|
[19] |
YARTYS V A, LOTOTSKYY M V. Laves type intermetallic compounds as hydrogen storage materials: A review[J]. Journal of Alloys and Compounds, 2022, 916: 165219. DOI: 10.1016/j.jallcom.2022.165219.
|
[20] |
LI Z Y, YAN Y H, HUANG H X, et al. Effects of the different element substitution on hydrogen storage properties of Ti0.8Zr0.2Mn0.9Cr0.6V0.3M0.2 (M=Fe, Ni, Co)[J]. Journal of Alloys and Compounds, 2022, 908: 164605. DOI: 10.1016/j.jallcom. 2022. 164605.
|