储能科学与技术 ›› 2025, Vol. 14 ›› Issue (10): 3677-3686.doi: 10.19799/j.cnki.2095-4239.2025.0238

• 储能材料与器件 • 上一篇    下一篇

“散-储”一体化的电池热管理系统研究

吕福祥(), 陆晓峰, 李洪峰, 朱晓磊()   

  1. 南京工业大学机械与动力工程学院,江苏 南京 210000
  • 收稿日期:2025-03-14 修回日期:2025-04-24 出版日期:2025-10-28 发布日期:2025-10-20
  • 通讯作者: 朱晓磊 E-mail:1175678273@qq.com;zhuxiaolei@njtech.edu.cn
  • 作者简介:吕福祥(1999—),男,硕士研究生,研究方向为电池热管理结构设计,E-mail:1175678273@qq.com

The research of the "dissipation-storage" integrated battery thermal management system

Fuxiang LYU(), Xiaofeng LU, Hongfeng LI, Xiaolei ZHU()   

  1. School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 210000, Jiangsu, China
  • Received:2025-03-14 Revised:2025-04-24 Online:2025-10-28 Published:2025-10-20
  • Contact: Xiaolei ZHU E-mail:1175678273@qq.com;zhuxiaolei@njtech.edu.cn

摘要:

本工作针对传统相变材料(PCM)与风冷耦合的电池热管理结构在散热效率上的不足,提出一种新型PCM与风冷耦合的“散-储”一体化热管理结构,该结构采用“X”型翅片与铜柱组合,能够大幅提升风冷的散热效率,满足严苛条件下电池的温度需求。本工作探讨了该结构在高温环境下,电池以6C放电和2C充电进行多次充放电循环过程的热特性,并研究了PCM物性参数以及冷板结构参数对结构传热特性的影响规律。结果表明:该新型电池热管理结构能在多次充放电循环过程中,使单体电池的最大温度控制在45 ℃以内,最大温差控制在3 ℃以内。PCM的熔点对电池温升影响较大,过高的熔点会导致电池最高温度过高,过低的熔点会使PCM熔化速度过快,导致PCM冷板在循环末段缺乏温度调节能力使电池温升加快。在确保PCM不会完全熔化的前提下,PCM的熔点越低越有利于将电池温度控制在合适的范围内;此外,增加PCM冷板厚度、冷板面板厚度以及翅片肋板厚度,能显著提升结构的散热性能与控温稳定性。该研究成果为远距离连续高速行驶工况和寒冷地区锂电池使用安全性的电池热管理系统设计提供了方法支撑。

关键词: 电池热管理, 相变材料, 风冷, 循环充放电

Abstract:

Traditional battery thermal management structure that integrates a phase change material (PCM) with air cooling—using "X"-shaped fins and copper columns—can significantly improve the heat dissipation efficiency of air cooling and meet the temperature requirements of batteries under harsh conditions. However, these structures still exhibit notable deficiencies in heat dissipation efficiency. To address these issues, we propose a novel and innovative "dissipation-storage-integrated" thermal management structure that effectively combines PCM and air cooling. This study investigates the thermal characteristics of the proposed structure during repeated charge-discharge cycles, in which the batteries discharge at a relatively high rate of 6 C and charge at 2 C under challenging high-temperature conditions. The effects of the PCM physical parameters (e.g., melting point, thermal conductivity, and specific heat capacity) and different cold-plate structural parameters (e.g., thickness, shape, and fin density) are analyzed to evaluate their influence on the heat transfer characteristics of the structure. The results demonstrate that the proposed battery thermal management structure is highly effective. It can successfully maintain the maximum temperature of a single battery cell within a safe range of 45 ℃ and limit the maximum temperature difference to within 3 ℃ throughout multiple charge-discharge cycles. Among PCM parameters, the melting point strongly influences the battery temperature rise. An excessively high melting point inevitably leads to an overly high maximum battery temperature, jeopardizing the battery's performance and lifespan. In contrast, an excessively low melting point causes PCM to melt alarmingly fast. As a result, the PCM-based cold-plate lacks the essential temperature-regulating capacity in the later part of the cycle, significantly accelerating the battery temperature rise. Provided that PCM does not completely melt, lowering the melting points is more favorable for maintaining safe operating temperatures. Additionally, increasing the thickness of the PCM cold-plate, cold-plate panel, and the fin ribs can significantly enhance the heat dissipation performance and temperature-control stability of the structure, further improving the overall efficiency of the thermal management system. These findings provide valuable methodological support for designing battery thermal management systems that ensure the safety of lithium-ion batteries under long-distance continuous high-speed driving conditions and in cold regions. The proposed approach not only strengthens the theoretical foundation of battery thermal management but also provides practical and valuable guidance for improving the performance and safety of battery systems in demanding application scenarios.

Key words: battery thermal management, phase change material, air cooling, charge-discharge cycle

中图分类号: