[1] |
唐康, 刘振祥, 唐丹, 等. 分布式电池系统热平衡控制设计[J]. 电池, 2024, 54(1): 41-46. DOI:10.19535/j.1001-1579.2024.01.009.
|
|
TANG K, LIU Z X, TANG D, et al. Design of thermal balancing control for distributed battery system[J]. Dianchi(Battery Bimonthly), 2024, 54(1): 41-46. DOI:10.19535/j.1001-1579.2024.01.009.
|
[2] |
孙涛, 郑侠, 郑岳久, 等. 基于电化学热耦合模型的锂离子电池快充控制[J]. 汽车工程, 2022, 44(4): 495-504. DOI: 10.19562/j.chinasae. qcgc.2022.04.005.
|
|
SUN T, ZHENG X, ZHENG Y J, et al. Fast charging control of lithium-ion batteries based on electrochemical-thermal coupling model[J]. Automotive Engineering, 2022, 44(4): 495-504. DOI: 10.19562/j.chinasae.qcgc.2022.04.005.
|
[3] |
PATEL J, PATEL R, SAXENA R, et al. Thermal analysis of high specific energy NCM-21700 Li-ion battery cell under hybrid battery thermal management system for EV applications[J]. Journal of Energy Storage, 2024, 88: 111567. DOI: 10.1016/j.est. 2024.111567.
|
[4] |
SCHÖBERL J, ANK M, SCHREIBER M, et al. Thermal runaway propagation in automotive lithium-ion batteries with NMC-811 and LFP cathodes: Safety requirements and impact on system integration[J]. eTransportation, 2024, 19: 100305. DOI: 10.1016/j.etran.2023.100305.
|
[5] |
WANG G, JIN B, WANG M Z, et al. State of charge estimation for "LiFePO4-LiCoxNiyMn1- x- yO2" hybrid battery pack[J]. Journal of Energy Storage, 2023, 65: 107345. DOI: 10.1016/j.est.2023. 107345.
|
[6] |
YAO S, WANG G, ZHU H, et al. Equalization method of 'LiCoxNiyMn1- x- yO2-LiFePO4' hybrid battery pack based on charging electric quantity estimation[J]. Journal of Energy Storage, 2023, 69: 107959. DOI: 10.1016/j.est.2023.107959.
|
[7] |
WANG M Z, WANG G, LUO Q, et al. Study on the configuration of LiCoxNiyMn1- x- yO2-LiFePO4 hybrid battery pack[J]. Applied Energy, 2024, 372: 123744. DOI: 10.1016/j.apenergy.2024. 123744.
|
[8] |
EBBS-PICKEN T, DA SILVA C M, AMON C H. Design optimization methodologies applied to battery thermal management systems: A review[J]. Journal of Energy Storage, 2023, 67: 107460. DOI: 10.1016/j.est.2023.107460.
|
[9] |
宋梦琼, 彭宇, 廖自强. 基于电化学热耦合模型的电池热管理研究[J]. 储能科学与技术, 2024, 13(2): 578-585. DOI: 10.19799/j.cnki. 2095-4239.2023.0620.
|
|
SONG M Q, PENG Y, LIAO Z Q. Research on battery thermal management based on electrochemical model[J]. Energy Storage Science and Technology, 2024, 13(2): 578-585. DOI: 10.19799/j.cnki.2095-4239.2023.0620.
|
[10] |
LI W, XIE Y, HU X S, et al. An internal heating strategy for lithium-ion batteries without lithium plating based on self-adaptive alternating current pulse[J]. IEEE Transactions on Vehicular Technology, 2023, 72(5): 5809-5823. DOI: 10.1109/TVT.2022. 3229187.
|
[11] |
LI K J, WANG H B, XU C S, et al. Multi-objective optimization of side plates in a large format battery module to mitigate thermal runaway propagation[J]. International Journal of Heat and Mass Transfer, 2022, 186: 122395. DOI: 10.1016/j.ijheatmasstransfer. 2021.122395.
|
[12] |
刘书琴, 王小燕, 张振东, 等. 锂离子电池组液冷式热管理系统的设计及优化[J]. 储能科学与技术, 2023, 12(7): 2155-2165. DOI: 10. 19799/j.cnki.2095-4239.2023.0152.
|
|
LIU S Q, WANG X Y, ZHANG Z D, et al. Experimental and simulation research on liquid-cooling system of lithium-ion battery packs[J]. Energy Storage Science and Technology, 2023, 12(7): 2155-2165. DOI: 10.19799/j.cnki.2095-4239.2023.0152.
|
[13] |
VERMA S P, SARASWATI S. Numerical and experimental analysis of air-cooled lithium-ion battery pack for the evaluation of the thermal performance enhancement[J]. Journal of Energy Storage, 2023, 73: 108983. DOI: 10.1016/j.est.2023.108983.
|
[14] |
SHI Y, AHMAD S, LIU H Q, et al. Optimization of air-cooling technology for LiFePO4 battery pack based on deep learning[J]. Journal of Power Sources, 2021, 497: 229894. DOI: 10.1016/j.jpowsour.2021.229894.
|
[15] |
FAN Y Q, BAO Y, LING C, et al. Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries[J]. Applied Thermal Engineering, 2019, 155: 96-109. DOI: 10.1016/j.applthermaleng. 2019.03.157.
|
[16] |
KANG D, LEE P Y, YOO K, et al. Internal thermal network model-based inner temperature distribution of high-power lithium-ion battery packs with different shapes for thermal management[J]. Journal of Energy Storage, 2020, 27: 101017. DOI: 10.1016/j.est. 2019.101017.
|
[17] |
ZHANG Y, SONG X D, MA C Y, et al. Effects of the structure arrangement and spacing on the thermal characteristics of Li-ion battery pack at various discharge rates[J]. Applied Thermal Engineering, . DOI: 10.1016/j.applthermaleng.2019.114610.
|
[18] |
刘剑, 于立博, 吴振兴, 等. 基于风冷的锂离子电池充放电设备热特性影响研究[J]. 储能科学与技术, 2024, 13(3): 914-923. DOI: 10. 19799/j.cnki.2095-4239.2023.0688.
|
|
LIU J, YU L B, WU Z X, et al. Effect of thermal characteristics of lithium-ion battery charging and discharging equipment on air cooling[J]. Energy Storage Science and Technology, 2024, 13(3): 914-923. DOI: 10.19799/j.cnki.2095-4239.2023.0688.
|
[19] |
徐晓斌, 徐业飞, 张恒运, 等. 风冷电池模组热性能及成组效率的多目标优化[J]. 储能科学与技术, 2022, 11(2): 553-562. DOI: 10. 19799/j.cnki.2095-4239.2021.0407.
|
|
XU X B, XU Y F, ZHANG H Y, et al. Multiobjective optimization of thermal performance and grouping efficiency for air cooling battery module[J]. Energy Storage Science and Technology, 2022, 11(2): 553-562. DOI: 10.19799/j.cnki.2095-4239.2021. 0407.
|
[20] |
SARMADIAN A, WIDANAGE W D, SHOLLOCK B, et al. Experimentally-verified thermal-electrochemical simulations of a cylindrical battery using physics-based, simplified and generalised lumped models[J]. Journal of Energy Storage, 2023, 70: 107910. DOI: 10.1016/j.est.2023.107910.
|
[21] |
LI A, YUEN A C Y, WANG W, et al. Numerical investigation on the thermal management of lithium-ion battery system and cooling effect optimization[J]. Applied Thermal Engineering, 2022, 215: 118966. DOI: 10.1016/j.applthermaleng.2022.118966.
|
[22] |
BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12. DOI: 10.1149/1.2113792.
|
[23] |
HE H S, CHEN X J, FLY A, et al. A Fast Activation Energy Derivation (FAED) approach for Lumped Single Particle model in lithium-ion battery module-level heat generation prediction[J]. Journal of Power Sources, 2023, 580: 233431. DOI: 10.1016/j.jpowsour.2023.233431.
|
[24] |
LEMPERT J, KOLLMEYER P, MALYSZ P, et al. Battery entropic heating coefficient testing and use in cell-level loss modeling for extreme fast charging[J]. SAE International Journal of Advances and Current Practices in Mobility, 2020, 2(5): 2712-2720. DOI: 10.4271/2020-01-0862.
|
[25] |
XIE Y Q, SHI S, TANG J C, et al. Experimental and analytical study on heat generation characteristics of a lithium-ion power battery[J]. International Journal of Heat and Mass Transfer, 2018, 122: 884-894. DOI: 10.1016/j.ijheatmasstransfer.2018.02.038.
|
[26] |
GOMADAM P M, WHITE R E, WEIDNER J W. Modeling heat conduction in spiral geometries[J]. Journal of the Electrochemical Society, 2003, 150(10): A1339. DOI: 10.1149/1.1605743.
|
[27] |
ZHANG S B, NIE F, CHENG J P, et al. Optimizing the air flow pattern to improve the performance of the air-cooling lithium-ion battery pack[J]. Applied Thermal Engineering, 2024, 236: 121486. DOI: 10.1016/j.applthermaleng.2023.121486.
|
[28] |
Introduction to computational fluid dynamics: Development, Application and analysis | SpringerLink [EB].
|
[29] |
MONIRUL I M, QIU L, RUBY R. Accurate SOC estimation of ternary lithium-ion batteries by HPPC test-based extended Kalman filter[J]. Journal of Energy Storage, 2024, 92: 112304. DOI: 10.1016/j.est.2024.112304.
|