储能科学与技术 ›› 2025, Vol. 14 ›› Issue (9): 3463-3475.doi: 10.19799/j.cnki.2095-4239.2025.0122

• 储能系统与工程 • 上一篇    

双体系混装电池组热特性研究及风冷散热结构优化

陈峥1(), 胡竞元1, 赵志刚2, 申江卫1, 夏雪磊1, 魏福星1()   

  1. 1.昆明理工大学交通工程学院,云南 昆明 650500
    2.北京航天发射技术研究所,北京 100076
  • 收稿日期:2025-02-12 修回日期:2025-02-25 出版日期:2025-09-28 发布日期:2025-09-05
  • 通讯作者: 魏福星 E-mail:chen@kust.edu.cn;wfx@kust.edu.cn
  • 作者简介:陈峥(1982—),男,教授,研究方向为动力电池管理与控制,E-mail:chen@kust.edu.cn
  • 基金资助:
    国家自然科学基金(52267022);云南省基础研究计划(202401AS070118)

Thermal characteristics study and optimization of air-cooling structures for dual-system battery packs

Zheng CHEN1(), Jingyuan HU1, Zhigang ZHAO2, Jiangwei SHEN1, Xuelei XIA1, Fuxing WEI1()   

  1. 1.Faculty of Transportation Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
    2.Beijing Institute of Space Launch Technology, Beijing 100076, China
  • Received:2025-02-12 Revised:2025-02-25 Online:2025-09-28 Published:2025-09-05
  • Contact: Fuxing WEI E-mail:chen@kust.edu.cn;wfx@kust.edu.cn

摘要:

锂离子电池在电动汽车领域的广泛应用存在性能方面的问题,为突破单一材料体系的限制,提出了三元锂电池与磷酸铁锂电池混用的双体系电池组设计方案,并已实现实车应用。为确保双体系电池组的热安全性,本工作研究了由18650三元锂电池与磷酸铁锂电池组成的双体系电池组的热特性。首先,建立了双体系电池组的三维电化学-热耦合模型,设计了Z形、U形和T形3种风冷散热结构,通过实验分析了两种锂离子电池产热差异并验证了所建立模型的精确性。对比不同位置的电池在自然风冷和强制风冷下的散热效果,优化了电池布局。研究结果表明,优化后的双体系电池组布局能有效降低电池组的最大温差,说明了该优化布局方案能够有效改善双体系电池组温度均匀性。当进口风速为8 m/s时,U形结构相较于Z形结构在最高温度、平均温度和最大温差上分别降低7.68%、6.86%和21.2%。最后,通过正交试验研究了U形结构的组内间距对散热的影响。Kruskal-Wallis检验结果表明,在1.5~4.5 mm内,组内间距对温度的影响较小,风冷结构和进口风速对散热性能的影响更为显著。

关键词: 锂离子电池, 双体系电池组, 风冷热管理系统, 数值模拟, 结构优化

Abstract:

The widespread application of lithium-ion batteries in electric vehicles is limited by performance constraints. To address the shortcomings of single-material systems, this study proposes a dual-system battery pack design integrating ternary lithium (NCM) and lithium iron phosphate (LFP) batteries, which has been successfully applied in practical vehicle systems. To ensure thermal safety, we investigate the thermal characteristics of a dual-system battery pack composed of 18650 NCM and LFP cells. A three-dimensional electrochemical–thermal coupling model is developed for the dual-system battery pack. Three air-cooling configurations (Z-type, U-type, and T-type) are designed, and experiments are conducted to analyze heat generation differences between the two cell types and to validate the model. Thermal dissipation performance under natural and forced air cooling is compared at different cell positions, leading to an optimized cell arrangement. The results show that the optimized layout effectively reduces the maximum temperature difference in the battery pack, improving temperature uniformity. At an inlet wind speed of 8 m/s, the U-type configuration reduces maximum temperature, average temperature, and maximum temperature difference by 7.68%, 6.86%, and 21.2%, respectively, compared to the Z-type configuration. Despite exhibiting a higher inlet-outlet pressure differential (78.21 Pa vs. 50.59 Pa for the Z-type), the U-type configuration achieves enhanced thermal uniformity through improved airflow distribution, effectively balancing cooling efficiency and pressure drop. Orthogonal experiments further examine the impact of intra-group spacing in the U-type configuration. Kruskal-Wallis test results indicate that within the range of 1.5—4.5 mm, intra-group spacing has minimal influence on temperature, while the cooling configuration and inlet air velocity predominantly determine thermal management performance. This research provides critical insights into optimizing thermal safety in hybrid battery systems.

Key words: lithium-ion batteries, dual-system battery packs, air-cooling thermal management system, numerical simulation, structural optimization

中图分类号: