• 储能科学与技术 •
李鹏举1(), 陈晓宇1, 谢佳2, 沈佳妮1(
), 贺益君1
收稿日期:
2025-06-10
修回日期:
2025-07-07
通讯作者:
沈佳妮
E-mail:lipengju@sjtu.edu.cn;jennyshen@sjtu.edu.cn
作者简介:
李鹏举(2001—),男,硕士研究生,从事电池功率状态预测研究,E-mail:lipengju@sjtu.edu.cn;
基金资助:
Pengju LI1(), Xiaoyu CHEN1, Jia XIE2, Jiani SHEN1(
), Yijun HE1
Received:
2025-06-10
Revised:
2025-07-07
Contact:
Jiani SHEN
E-mail:lipengju@sjtu.edu.cn;jennyshen@sjtu.edu.cn
摘要:
随着锂离子电池的广泛应用,电池功率状态(State of Power, SOP)预测作为保障电池高效、安全运行的关键技术,其重要性日益凸显。本文系统综述了SOP预测方法,对查表法、机理模型法、等效电路模型法和数据驱动法四类方法进行了梳理,并对模组SOP预测进行了探讨。查表法简单直接,但需要多次充放电实验、时间成本较高、使用工况单一;机理模型法基于多孔电极理论和浓溶液理论,通过偏微分方程精确描述电池内部反应机制,可对电池内部参数进行考量,但计算复杂度高;等效电路模型法采用电路元件模拟电池动态响应,易与电压、电流、荷电状态等参数约束结合,兼顾精度与计算效率;数据驱动法利用机器学习算法直接从运行数据构建SOP预测模型,或结合传统机理模型构建混合模型实施SOP预测,预测性能依赖于数据质量和数量。在模组SOP预测方面,重点阐述了电池不一致性对模组功率的影响,并对其解决思路进行了分析。最后,对现有挑战和未来发展方向进行总结。当前SOP预测技术仍面临四个主要挑战:一是应用于储能场景时存在局限性;二是预测精度和计算效率难以满足应用需求;三是电池老化过程中易发生模型失配问题,影响预测精度;四是模组层面电池一致性差异,增加了预测难度。为应对上述挑战,未来SOP预测技术将朝着高精度建模和求解策略优化、模型参数与约束边界动态更新以及“短板电池识别—特征单体建模—模型参数动态更新”等方向发展,为储能系统提供更安全、更高效的电池管理解决方案。
中图分类号:
李鹏举, 陈晓宇, 谢佳, 沈佳妮, 贺益君. 锂离子电池功率状态预测方法研究进展[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0549.
Pengju LI, Xiaoyu CHEN, Jia XIE, Jiani SHEN, Yijun HE. Research Progress on State of Power Prediction Methods for Lithium-ion Batteries[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0549.
[1] | YOSHINO A. The Birth of the Lithium‐Ion Battery[J]. Angewandte Chemie International Edition, 2012, 51(24): 5798-5800. |
[2] | XU J J, CAI X Y, CAI S M, et al. High‐Energy Lithium‐Ion Batteries: Recent Progress and a Promising Future in Applications[J]. ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6(5): 60-85. |
[3] | PLETT G L. High-Performance Battery-Pack Power Estimation Using a Dynamic Cell Model[J]. IEEE Transactions on Vehicular Technology, 2004, 53(5): 1586-1593. |
[4] | VAN REEVEN V, HOFMAN T. Multi-Level Energy Management for Hybrid Electric Vehicles—Part I[J]. Vehicles, 2019, 1(1): 3-40. |
[5] | COLLATH N, TEPE B, ENGLBERGER S, et al. Aging aware operation of lithium-ion battery energy storage systems: A review[J]. Journal of Energy Storage, 2022, 55: 105634. |
[6] | PASCUAL J, BARRICARTE J, SANCHIS P, et al. Energy management strategy for a renewable-based residential microgrid with generation and demand forecasting[J]. Applied Energy, 2015, 158: 12-25. |
[7] | DONG X J, SHEN J N, MA Z F, et al. Stochastic optimization of integrated electric vehicle charging stations under photovoltaic uncertainty and battery power constraints[J]. Energy, 2025, 314: 134163. |
[8] | 庄全超, 徐守冬, 邱祥云, 等. 锂离子电池的电化学阻抗谱分析[J]. 化学进展, 2010(06): 26-39. |
ZHUANG Q, XU S, QIU X, et al. Electrochemical Impedance Spectroscopy in Lithium-ion Batteries Diagnosis[J], Progress in Chemistry, 2010(06): 26-39. | |
[9] | GEETHA N, KAVITHA D, KUMARESAN D. Influence of Electrode Parameters on the Performance Behavior of Lithium-Ion Battery[J]. Journal of Electrochemical Energy Conversion and Storage, 2023, 20(1). |
[10] | DAI M, JIANG X. Research on SOC and SOP Co-simulation Estimation of Lithium-Ion Battery for Vehicle[M]//WANG Y, MARTINSEN K, YU T, et al. Advanced Manufacturing and Automation XI: Vol. 880. Singapore: Springer Singapore, 2022: 570-577. |
[11] | AL RASYID AR Z J, FIRMANSYAH E, WIJAYA F D. Modeling of Temperature Effect on SoC of Lithium Ion Battery Pack[C]//2021 3rd International Symposium on Material and Electrical Engineering Conference (ISMEE). Bandung, Indonesia: IEEE, 2021: 299-303. |
[12] | HAMIDAH N L, NUGROHO G, WANG F M. Electrochemical analysis of electrolyte additive effect on ionic diffusion for high-performance lithium ion battery[J]. Ionics, 2016, 22(1): 33-41. |
[13] | 虢放, 薛明喆, 张存满. 电极厚度对锂离子电池电化学性能的影响[J]. 电源技术, 2017, 41(8): 1114-1117,1123. |
HU F, XUE M Z, ZHANG C M. Effect of electrode thickness on electrochemical performance of lithium ion batteries[J]. Chinese Journal of Power Sources, 2017, 41(8): 1114-1117,1123. | |
[14] | TAO X, WANG Q L, GUO W Q, et al. Influence of aviation low-pressure environment on the aging behavior and thermal safety of lithium titanate batteries[J]. Journal of Energy Storage, 2025, 112: 115488. |
[15] | BARCELLONA S, PIEGARI L. Effect of current on cycle aging of lithium ion batteries[J]. Journal of Energy Storage, 2020, 29: 101310. |
[16] | 严康为, 龙鑫林, 鲁军勇, 等. 高倍率磷酸铁锂电池简化机理建模与放电特性分析[J]. 电工技术学报, 2022, 37(3): 11. |
YAN K W, LONG X L, LU J Y, et al. Simplified Mechanism Modeling and Discharge Characteristic Analysis of High C-Rate LiFePO4Battery [J]. Transactions of China Electrotechnical Society, 2022, 37(3): 11. | |
[17] | WANG X Y, FANG Q H, DAI H F, et al. Investigation on Cell Performance and Inconsistency Evolution of Series and Parallel Lithium-Ion Battery Modules[J]. Energy Technology, 2021, 9(7): 2100072. |
[18] | HAN Y J, YUAN H Y, LI J, et al. Study on Influencing Factors of Consistency in Manufacturing Process of Vehicle Lithium-Ion Battery Based on Correlation Coefficient and Multivariate Linear Regression Model[J]. Advanced Theory and Simulations, 2021, 4(8): 2100070. |
[19] | 汪宜秀, 魏学哲, 房乔华, 等. 面向整组寿命最大化的电动汽车电池一致性变化规律及其均衡策略[J]. 机械工程学报, 2020, 56(22): 176-183. |
WANG Y X, WEI X Z, FANG Q H, et al. Consistency Variation Law and Equalization Strategy of Electric Vehicle Battery for Maximizing the Life of the Battery Pack[J]. Journal of Mechanical Engineering, 2020, 56(22): 176-183. | |
[20] | GUO R H, HU C G, SHEN W X. An Electric Vehicle-Oriented Approach for Battery Multi-Constraint State of Power Estimation Under Constant Power Operations[J]. IEEE Transactions on Vehicular Technology, 2024, 73(3): 3300-3310. |
[21] | GUO R H, HU C G, SHEN W X. Battery Peak Power Assessment under Various Operational Scenarios: A Comparative Study[J]. IEEE Transactions on Transportation Electrification, 2024: 1-1. |
[22] | FARMANN A, SAUER D U. A comprehensive review of on-board State-of-Available-Power prediction techniques for lithium-ion batteries in electric vehicles[J]. Journal of Power Sources, 2016, 329: 123-137. |
[23] | 彭思敏, 徐璐, 张伟峰, 等. 锂离子电池功率状态预测方法综述[J]. 机械工程学报, 2022, 58(20): 361-378. |
PENG S M, XU L, ZHANG W F, et al. Overview of State of Power Prediction Methods for Lithium-ion Batteries[J]. Journal of Mechanical Engineering, 2022, 58(20): 361-378. | |
[24] | BELT J R. Battery Test Manual For Plug-In Hybrid Electric Vehicles, September 2010[J]. 2010. |
[25] | 甄子健. 完善EV、HEV用动力蓄电池测试规范[J]. 高技术通讯, 2003(08). |
ZHEN Z J. Improving the test specifications for power batteries used in EVs and HEVs[J]. Chinese High Technology Letters, 2003(08). | |
[26] | LIU Y, ZHANG C P, JIANG J C, et al. A 3D distributed circuit-electrochemical model for the inner inhomogeneity of lithium-ion battery[J]. Applied Energy, 2023, 331: 120390. |
[27] | SUN X, CAO Y, ZHENG L, et al. A Comparative Investigation on Peak Current Solution Methods for Lithium-Ion Battery Peak Power Capability Prediction[J]. IEEE Transactions on Energy Conversion, 2023, 38(3): 1691-1700. |
[28] | HUSSAIN A, MAO Z Y, LI M, et al. A Comprehensive Review of the Pseudo-Two-Dimensional (P2D) Model: Model Development, Solutions Methods, and Applications[J]. Advanced Theory and Simulations, 2025, 8(5): 2401016. |
[29] | 路金玲, 张希, 靳伟, 等. 锂电池电化学传递函数模型的建立和验证[J]. 电源技术, 2017, 41(12): 1715-1717. |
LU J L, ZHANG X, JIN W, et al. Foundation and validation of electrochemical transfer function model of Li-ion battery[J]. Chinese Journal of Power Sources, 2017, 41(12): 1715-1717. | |
[30] | DOYLE M, FULLER T F, NEWMAN J. Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell[J]. Journal of The Electrochemical Society, 1993, 140(6): 1526-1533. |
[31] | NEWMAN J, THOMAS K E, HAFEZI H, et al. Modeling of lithium-ion batteries[J]. Journal of Power Sources, 2003, 119-121: 838-843. |
[32] | GRANDJEAN T R B, LI L Y, ODIO M X, et al. Global Sensitivity Analysis of the Single Particle Lithium-Ion Battery Model with Electrolyte[C]//2019 IEEE Vehicle Power and Propulsion Conference (VPPC). Hanoi, Vietnam: IEEE, 2019: 1-7. |
[33] | GOPALAKRISHNAN K, OFFER G J. A Composite Single Particle Lithium-Ion Battery Model Through System Identification[J]. IEEE Transactions on Control Systems Technology, 2022, 30(1): 1-13. |
[34] | REN L C, ZHU G R, KANG J Q, et al. An algorithm for state of charge estimation based on a single-particle model[J]. The Journal of Energy Storage, 2021, 39(6): 102644. |
[35] | LI W H, FAN Y, RINGBECK F, et al. Unlocking electrochemical model-based online power prediction for lithium-ion batteries via Gaussian process regression[J]. Applied Energy, 2022, 306: 118114. |
[36] | 沈佳妮, 贺益君, 马紫峰. 基于模型的锂离子电池SOC及SOH估计方法研究进展[J]. 化工学报, 2018, 69(1): 309-316. |
[37] | JOHNSON V H. Battery performance models in ADVISOR[J]. Journal of Power Sources, 2002, 110(2): 321-329. |
[38] | YANNLIAW B. Modeling of lithium ion cells—A simple equivalent-circuit model approach[J]. Solid State Ionics, 2004, 175(1-4): 835-839. |
[39] | 魏增福, 董波, 刘新天, 等. 锂电池动态系统Thevenin模型研究[J]. 电源技术, 2016, 40(2): 291-293. |
WEI Z F, DONG B, LIU X T, et al. Study on dynamical system Thevenin model of Li-ion battery[J]. Chinese Journal of Power Sources, 2016, 40(2): 291-293. | |
[40] | 寇睿媛, 王顺利, 屈维. 锂离子蓄电池PNGV等效电路模型构建方法研究[J]. 电源世界, 2015(7): 41-44. |
KOU R Y, WANG S L, QU W. Lithium-ion Battery PNGV Equivalent Circuit Model Construction Method Study[J]. The World of Power Supply, 2015(7): 41-44. | |
[41] | GUO R H, SHEN W X. A Model Fusion Method for Online State of Charge and State of Power Co-Estimation of Lithium-Ion Batteries in Electric Vehicles[J]. IEEE Transactions on Vehicular Technology, 2022, 71(11): 11515-11525. |
[42] | LIU C H, HU M H, JIN G Q, et al. State of power estimation of lithium-ion battery based on fractional-order equivalent circuit model[J]. Journal of Energy Storage, 2021, 41: 102954. |
[43] | HUANG K F, WANG Y, FENG J Q. Research on equivalent circuit Model of Lithium-ion battery for electric vehicles[C]//2020 3rd World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM). Shanghai, China: IEEE, 2020: 492-496. |
[44] | MALYSZ P, YE J, GU R, et al. Battery State-of-Power Peak Current Calculation and Verification Using an Asymmetric Parameter Equivalent Circuit Model[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6): 4512-4522. |
[45] | JIANG B, DAI H F, WEI X Z, et al. Online Reliable Peak Charge/Discharge Power Estimation of Series-Connected Lithium-Ion Battery Packs[J]. Energies, 2017, 10(3): 390. |
[46] | ZHOU S D, LIU X H, HUA Y, et al. Adaptive model parameter identification for lithium-ion batteries based on improved coupling hybrid adaptive particle swarm optimization- simulated annealing method[J]. Journal of Power Sources, 2021, 482: 228951. |
[47] | MOHAMED M A A, FAI YU T, GRANDJEAN T. PSO-Tuned Variable Forgetting Factor Recursive Least Square Estimation of 2RC Equivalent Circuit Model Parameters for Lithium-Ion Batteries[C]//2023 IEEE Vehicle Power and Propulsion Conference (VPPC). Milan, Italy: IEEE, 2023: 1-6. |
[48] | ZHONG Z, ZHAI J. Model-Based Battery SOC Estimation Based on GA-UKF Algorithm[C]. 2020. |
[49] | WANG Q K, HE Y J, SHEN J N, et al. A unified modeling framework for lithium-ion batteries: An artificial neural network based thermal coupled equivalent circuit model approach[J]. Energy, 2017, 138: 118-132. |
[50] | KARIMI D, BEHI H, VAN MIERLO J, et al. Equivalent Circuit Model for High-Power Lithium-Ion Batteries under High Current Rates, Wide Temperature Range, and Various State of Charges[J]. Batteries, 2023, 9(2): 101. |
[51] | GOSHTASBI A, ZHAO R, WANG R, et al. Enhanced equivalent circuit model for high current discharge of lithium-ion batteries with application to electric vertical takeoff and landing aircraft[J]. Journal of Power Sources, 2024, 620: 235188. |
[52] | SHEN J N, WANG Q K, MA Z F, et al. Nonlinear Optimization Strategy for State of Power Estimation of Lithium-Ion Batteries: A Systematical Uncertainty Analysis of Key Impact Parameters[J]. IEEE Transactions on Industrial Informatics, 2022, 18(10): 6680-6689. |
[53] | PAN R, WANG Y J, ZHANG X, et al. Power capability prediction for lithium-ion batteries based on multiple constraints analysis[J]. Electrochimica Acta, 2017, 238: 120-133. |
[54] | SUN F C, XIONG R, HE H W, et al. Model-based dynamic multi-parameter method for peak power estimation of lithium–ion batteries[J]. Applied Energy, 2012, 96: 378-386. |
[55] | HU X S, XIONG R, EGARDT B. Model-Based Dynamic Power Assessment of Lithium-Ion Batteries Considering Different Operating Conditions[J]. IEEE Transactions on Industrial Informatics, 2014, 10(3): 1948-1959. |
[56] | GUO R H, SHEN W X. An enhanced multi-constraint state of power estimation algorithm for lithium-ion batteries in electric vehicles[J]. Journal of Energy Storage, 2022, 50: 104628. |
[57] | LU J H, CHEN Z Y, YANG Y, et al. Online Estimation of State of Power for Lithium-Ion Batteries in Electric Vehicles Using Genetic Algorithm[J]. IEEE Access, 2018, 6: 20868-20880. |
[58] | ZHANG S, GUO X, ZHANG X. Modeling of Back-Propagation Neural Network Based State-of-Charge Estimation for Lithium-Ion Batteries with Consideration of Capacity Attenuation[J]. Advances in Electrical and Computer Engineering, 2019, 19(3): 3-10. |
[59] | 戴群亮, 赵丁选. 基于BP神经网络优化算法的工程车辆挡位判断的训练及仿真[J]. 机械工程学报, 2002, 38(11): 124-127. |
DAI Q L, ZHAO D X. Training and Simulation on Gear Position Decision for Vehicle Based on Optimal Algorithm of BP Network[J]. Journal of Mechanical Engineering, 2002, 38(11): 124-127. | |
[60] | 全小红, 索春光, 张文斌, 等. 基于最小二乘支持向量机的锂离子电池的SOC估算[J]. 新技术新工艺, 2014(1): 94-96. |
QUAN X H, SUO C G, ZHANG W B, et al. Estimation of Lithium Ion Battery SOC based on Least Square Support Vector Machine[J]. New Technology & New Process, 2014(1): 94-96. | |
[61] | 郑方丹,姜久春,陈坤龙,等.基于数据统计特性的GS-SVM电池峰值功率预测模型[J]. 电力自动化设备,2017,37(09):56-61. |
ZHENG F D, JIANG J C, CHEN K L, et al. Peak power prediction model for batteries based on data statistical characteristic and GS-SVM[J]. Electric Power Automation Equipment,2017,37(09):56-61. | |
[62] | XIAO F, LI C R, FAN Y X, et al. State of charge estimation for lithium-ion battery based on Gaussian process regression with deep recurrent kernel[J]. International Journal of Electrical Power & Energy Systems, 2021, 124: 106369. |
[63] | QU W W, DENG H, PANG Y, et al. An Improved Gaussian Process Regression Based Aging Prediction Method for Lithium-Ion Battery[J]. World Electric Vehicle Journal, 2023, 14(6):153. |
[64] | 朱浩, 张文博, 邓元望, 等. 基于SA+BP混合算法的动力电池放电峰值功率估算[J]. 江苏大学学报(自然科学版), 2020, 41(2): 192-198. |
[65] | GAO G, DONG G, LOU Y, et al. Physics-Informed Data-Driven Power Capacity Prediction of Lithium-Ion Battery Against Various Temperatures[J]. IEEE Transactions on Intelligent Transportation Systems, 2025, 26(6): 8670-8681. |
[66] | 丁明, 陈忠, 苏建徽, 等. 可再生能源发电中的电池储能系统综述[J]. 电力系统自动化, 2013, 37(1): 19-25+102. |
DING M, CHEN Z, SU J H, et al. An Overview of Battery Energy Storage System for Renewable Energy Generation[J]. Automation of Electric Power Systems, 2013, 37(1): 19-25+102. | |
[67] | CAI Y P, CANCIAN M, D'ARPINO M, et al. A generalized equivalent circuit model for large-scale battery packs with cell-to-cell variation[C]//2019 IEEE National Aerospace and Electronics Conference (NAECON). Dayton, OH, USA: IEEE, 2019: 24-30. |
[68] | FANTHAM T. Experimental Analysis, Modelling and Optimisation of Large Scale Lithium-ion Batteries[D]. University of Sheffield, 2021. |
[69] | 王帅, 尹忠东, 郑重, 等. 电池模组一致性影响因素在放电电压曲线簇上的表征[J]. 电工技术学报, 2020, 35(8): 1836-1848. |
WANG S, YIN Z D, ZHENG Z, et al. Representation of Influence Factors for Battery Module Consistency on Discharge Voltage Curves[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1836-1848. | |
[70] | 魏学哲, 陆天怡, 房乔华, 等. 并联电池组电流分布及寿命一致性演变规律研究[J]. 机电一体化, 2018, 24(11): 3-11. |
WEI X Z, LU T Y, FANG Q H, et al. A Study of Current Distribution and Lifetime Inconsistency Evolution Pattern in Parallel-connected Battery Modules[J]. Mechatronics, 2018, 24(11): 3-11. | |
[71] | ZHANG E, YAN S, ZHANG Y, et al. Influence of Parameter Differences on the Current Distribution Within Parallel-connected Liquid Metal Batteries[C]//2023 26th International Conference on Electrical Machines and Systems (ICEMS). Zhuhai, China: IEEE, 2023: 4632-4637. |
[72] | HAN W J, ALTAF F, ZOU C F, et al. State of Power Prediction for Battery Systems With Parallel-Connected Units[J]. IEEE Transactions on Transportation Electrification, 2022, 8(1): 925-935. |
[73] | WANG S L, Stroe D, XIONG L Y, et al. A novel power state evaluation method for the lithium battery packs based on the improved external measurable parameter coupling model[J]. Journal of Cleaner Production, 2020, 242: 118506. |
[74] | ZHONG L, ZHANG C B, HE Y, et al. A method for the estimation of the battery pack state of charge based on in-pack cells uniformity analysis[J]. Applied Energy, 2014, 113: 558-564. |
[75] | WANG S L, Fernandez C, YU C M, et al. A novel charged state prediction method of the lithium-ion battery packs based on the composite equivalent modeling and improved splice Kalman filtering algorithm[J]. Journal of Power Sources, 2020, 471: 228450. |
[76] | SHEN J N, WANG Q K, WANG C, et al. Discriminating Internal Multi-Parameter Difference from Shape Dissimilarity between Voltage Curves of Lithium-ion Batteries[J]. IEEE Transactions on Industrial Informatics, 2023, 20(2): 1832-1841. |
[77] | ZHOU Z K, KANG Y Z, SHANG Y L, et al. Peak power prediction for series-connected LiNCM battery pack based on representative cells[J]. Journal of Cleaner Production, 2019, 230: 1061-1073. |
[1] | 刘佳辉, 卞伟翔, 李大伟. 锂电池石墨复合电极力-电耦合性能原位测量分析[J]. 储能科学与技术, 2025, 14(6): 2240-2247. |
[2] | 陈峥, 多功东, 申江卫, 沈世全, 刘昱, 魏福星. 基于容量增量分析与VMD-GWO-KELM的锂电池健康状态估计[J]. 储能科学与技术, 2025, 14(6): 2476-2487. |
[3] | 阮晶晶, 巫湘坤, 李勇慧, 赵冲冲, 李珅珅, 王童飞, 梁圣杰, 高桂红. 低成本干法石墨厚电极的制备与性能研究[J]. 储能科学与技术, 2025, 14(6): 2248-2255. |
[4] | 韩丹丹, 张武卫, 张亮, 王宗江. 核壳结构LiMn1-y Fe y PO4/C正极材料设计与电化学性能研究[J]. 储能科学与技术, 2025, 14(6): 2215-2222. |
[5] | 王功瑞, 张安萍, 任萱萱, 杨铭哲, 韩宇宁, 吴忠帅. 高电压钴酸锂正极:关键挑战、改性策略与未来展望[J]. 储能科学与技术, 2025, 14(6): 2278-2319. |
[6] | 周海洋, 张振东, 盛雷, 朱泽华, 张晓军, 张春风. 储能用锂电池浸没式热性能调控仿真及热安全实验研究[J]. 储能科学与技术, 2025, 14(5): 1866-1874. |
[7] | 宋海飞, 王乐红, 原义栋, 赵天挺, 陈捷. 基于改进卡尔曼算法的电池采样电压滤波估计[J]. 储能科学与技术, 2025, 14(5): 2106-2113. |
[8] | 曾州岚, 尚雷, 胡志金, 王宗凡, 辛小超, 刘瑛. 高容量锂离子电池正极补锂材料Li5FeO4@C的性能研究[J]. 储能科学与技术, 2025, 14(5): 1875-1883. |
[9] | 莫子鸣, 饶宗昕, 杨建飞, 杨孟昊, 蔡黎明. 锂离子电池过充热失控气热模型构建及关键参数影响分析[J]. 储能科学与技术, 2025, 14(5): 1784-1796. |
[10] | 彭磊, 倪照鹏, 于越, 孙福鹏, 夏修龙, 张鹏, 孙思博. 过充导致三元锂电池电动汽车火灾的试验研究[J]. 储能科学与技术, 2025, 14(4): 1484-1495. |
[11] | 申江卫, 折亦鑫, 舒星, 刘永刚, 魏福星, 夏雪磊, 陈峥. 基于短时随机充电数据和优化卷积神经网络的锂电池健康状态估计[J]. 储能科学与技术, 2025, 14(4): 1585-1595. |
[12] | 刘瑞昊, 马小乐, 张宇萱, 朱曰莹, 刘仕强, 白广利. 基于绝热量热仪的锂离子电池热物性参数测试影响因素研究[J]. 储能科学与技术, 2025, 14(4): 1596-1602. |
[13] | 董作林, 宋金岩, 孟子迪. 基于模态分解和深度学习的锂离子电池寿命预测[J]. 储能科学与技术, 2025, 14(4): 1645-1653. |
[14] | 徐桂培, 刘浩, 赖洁文, 卢毅锋, 黄辉, 邸会芳, 王振兵. 干法电极技术在超级电容器和锂离子电池中的研究进展[J]. 储能科学与技术, 2025, 14(4): 1445-1460. |
[15] | 岳金明, 刘媛丽, 陈一霞, 禹习谦, 李泓. GC-MS检测锂离子电池电解液分离条件的研究[J]. 储能科学与技术, 2025, 14(4): 1564-1573. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||