储能科学与技术 ›› 2025, Vol. 14 ›› Issue (6): 2476-2487.doi: 10.19799/j.cnki.2095-4239.2024.1253

• 储能测试与评价 • 上一篇    下一篇

基于容量增量分析与VMD-GWO-KELM的锂电池健康状态估计

陈峥1(), 多功东1, 申江卫1, 沈世全1, 刘昱2, 魏福星1()   

  1. 1.昆明理工大学交通工程学院,云南 昆明 650500
    2.中国汽车技术研究中心有限公司,天津 300300
  • 收稿日期:2024-12-30 修回日期:2025-01-15 出版日期:2025-06-28 发布日期:2025-06-27
  • 通讯作者: 魏福星 E-mail:chen@kust.edu.cn;wfx@kust.edu.cn
  • 作者简介:陈峥(1982—),男,教授,研究方向为动力电池管理与控制,E-mail:chen@kust.edu.cn
  • 基金资助:
    国家自然科学基金(52267022);云南省基础研究计划项目(202401AS070118)

State of health estimation for lithium battery based on incremental capacity analysis and VMD-GWO-KELM

Zheng CHEN1(), Gongdong DUO1, Jiangwei SHEN1, Shiquan SHEN1, Yu LIU2, Fuxing WEI1()   

  1. 1.Faculty of Transportation Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
    2.China Automotive Technology and Research Center Co. Ltd, Tianjin 300300, China
  • Received:2024-12-30 Revised:2025-01-15 Online:2025-06-28 Published:2025-06-27
  • Contact: Fuxing WEI E-mail:chen@kust.edu.cn;wfx@kust.edu.cn

摘要:

为克服传统健康状态估计方法中的特征提取质量不足、非线性特性复杂及模型参数优化困难等问题,本工作提出一种基于容量增量分析与VMD-GWO-KELM的健康状态估计方法。首先,本工作通过改进的基于洛伦兹函数的电压容量模型,对电池恒流充电过程中的电压-容量数据进行拟合,提取峰电压、峰值和峰面积等健康特征,并利用灰狼优化算法完成模型参数识别,从而有效提升了特征提取质量和鲁棒性。其次,采用变分模态分解技术对健康状态信号进行多尺度分解,将模态分量作为独立子模型的输入,捕捉不同频域的关键特性,降低了信号混叠和噪声影响。然后,结合灰狼优化算法对核极限学习机模型的关键参数进行优化,显著提高了非线性拟合能力和估计精度。最后,通过不同训练量、不同估计模型对比和多电池数据的验证,全面评估模型性能。实验结果表明,本工作提出的算法在仅使用100次循环数据的情况下,即可实现高精度健康状态估计,平均绝对误差为0.9751%,最大误差为1.9340%,同时表现出良好的鲁棒性和泛化能力。

关键词: 锂离子电池, 健康状态, 容量增量分析, 变分模态分解, 灰狼优化, 核极限学习机

Abstract:

To overcome the limitations of traditional state of health (SOH) estimation methods—such as inadequate feature extraction, nonlinear complexity, and difficulty in model parameter optimization—this study proposes a novel SOH estimation approach based on incremental capacity analysis combined with variational mode decomposition (VMD), grey wolf optimization (GWO), and kernel extreme learning machine (KELM). First, an improved voltage-capacity model based on the Lorentz function is employed to fit voltage-capacity data during the constant-current charging process, enabling the extraction of health indicators such as peak voltage, peak value, and peak area. Model parameters are optimized using the GWO algorithm, thereby improving feature extraction accuracy and robustness. Next, VMD is applied to decompose SOH-related signals into multiple intrinsic mode functions. These components serve as inputs to individual sub-models, effectively capturing signal characteristics across distinct frequency domains while mitigating noise and mode mixing. Subsequently, the GWO algorithm is used to optimize the key parameters of the KELM model, significantly enhancing its nonlinear regression capability and estimation accuracy. The proposed method is evaluated through comparative analyses across different training data sizes, estimation models, and datasets from multiple batteries. Experimental results demonstrate that the proposed method achieves high-accuracy SOH estimation using only 100 cycles of data, with a mean absolute error of 0.9751% and a maximum error of 1.9340%. The model also exhibits strong robustness and generalization performance.

Key words: lithium-ion batteries, state of health, incremental capacity analysis, variational mode decomposition, grey wolf optimization, kernel extreme learning machine

中图分类号: