1 |
肖先勇, 郑子萱. "双碳" 目标下新能源为主体的新型电力系统: 贡献、关键技术与挑战[J]. 工程科学与技术, 2022(1): 47-59. DOI: 10.15961/j.jsuese.202100656.
|
|
XIAO X Y, ZHENG Z X. New power systems dominated by renewable energy towards the goal of emission peak & carbon neutrality: Contribution, key techniques, and challenges[J]. Advanced Engineering Sciences, 2022(1): 47-59. DOI: 10.15961/j.jsuese. 202100656.
|
2 |
刘畅, 卓建坤, 赵东明, 等. 利用储能系统实现可再生能源微电网灵活安全运行的研究综述[J]. 中国电机工程学报, 2020, 40(1): 18.
|
|
LI C, ZHUO J K, ZHAO D M, et al. A review on the utilization of energy storage system for the flexible and safe operation of renewable energy microgrids[J]. Proceedings of the CSEE, 2020, 40(1): 18.
|
3 |
潘新慧, 陈人杰, 吴锋. 电化学储能技术发展研究[J].中国工程科学, 2023, 25(6): 11.
|
|
PAN X H, CHEN R J, WU F. Development of electrochemical energy storage technology[J]. Strategic Study of CAE, 2023, 25(6): 225. DOI: 10.15302/j-sscae-2023.06.019.
|
4 |
吴皓文, 王军, 龚迎莉, 等. 储能技术发展现状及应用前景分析[J]. 电力学报, 2021, 36(5): 434-443. DOI: 10.13357/j.dlxb.2021.052.
|
|
WU H W, WANG J, GONG Y L, et al. Development status and application prospect analysis of energy storage technology[J]. Journal of Electric Power, 2021, 36(5): 434-443. DOI: 10.13357/j.dlxb.2021.052.
|
5 |
盛军, 付一民, 俞会根. 储能软包大模组结构稳定性[J]. 储能科学与技术, 2023, 12(2): 579-584.
|
|
SHENG J, FU Y M, YU H G. Structure simulation of large soft pack module for energy storage[J]. Energy Storage Science and Technology, 2023, 12(2): 579-584.
|
6 |
梁浩斌, 杜建华, 郝鑫, 等. 锂电池膨胀形成机制研究现状[J]. 储能科学与技术, 2021, 10(2): 647-657. DOI: 10.19799/j.cnki.2095-4239. 2020.0358.
|
|
LIANG H B, DU J H, HAO X, et al. A review of current research on the formation mechanism of lithium batteries[J]. Energy Storage Science and Technology, 2021, 10(2): 647-657. DOI: 10. 19799/j.cnki.2095-4239.2020.0358.
|
7 |
金阳, 薛志业, 姜欣, 等. 储能锂离子电站安全防护研究进展[J]. 郑州大学学报(理学版), 2023, 55(3): 1-13. DOI: 10.13705/j.issn.1671-6841.2022081.
|
|
JIN Y, XUE Z Y, JIANG X, et al. Research progress of safety protection of lithium-ion energy storage power station[J]. Journal of Zhengzhou University (Natural Science Edition), 2023, 55(3): 1-13. DOI: 10.13705/j.issn.1671-6841.2022081.
|
8 |
CHEN S Q, WEI X Z, ZHANG G X, et al. Active and passive safety enhancement for batteries from force perspective[J]. Renewable and Sustainable Energy Reviews, 2023, 187: 113740. DOI: 10.1016/j.rser.2023.113740.
|
9 |
CAI T, STEFANOPOULOU A G, SIEGEL J B. Modeling Li-ion battery temperature and expansion force during the early stages of thermal runaway triggered by internal shorts[J]. Journal of the Electrochemical Society, 2019, 166(12): A2431-A2443. DOI: 10. 1149/2.1561910jes.
|
10 |
LV H P, KONG D P, PING P, et al. Anomaly detection of LiFePO4 pouch batteries expansion force under preload force[J]. Process Safety and Environmental Protection, 2023, 176: 1-11. DOI: 10. 1016/j.psep.2023.05.068.
|
11 |
LI Y K, WEI C, SHENG Y M, et al. Swelling force in lithium-ion power batteries[J]. Industrial & Engineering Chemistry Research, 2020, 59(27): 12313-12318. DOI: 10.1021/acs.iecr.0c01035.
|
12 |
ANDERSEN H L, DJUANDHI L, MITTAL U, et al. Strategies for the analysis of graphite electrode function[J]. Advanced Energy Materials, 2021, 11(48): 2102693. DOI: 10.1002/aenm.2021 02693.
|
13 |
BAUER M, WACHTLER M, STÖWE H, et al. Understanding the dilation and dilation relaxation behavior of graphite-based lithium-ion cells[J]. Journal of Power Sources, 2016, 317: 93-102. DOI: 10.1016/j.jpowsour.2016.03.078.
|
14 |
CAI W L, YAO Y X, ZHU G L, et al. A review on energy chemistry of fast-charging anodes[J]. Chemical Society Reviews, 2020, 49(12): 3806-3833. DOI: 10.1039/c9cs00728h.
|
15 |
SCHWEIDLER S, DE BIASI L, SCHIELE A, et al. Volume changes of graphite anodes revisited: A combined operando X-ray diffraction and In situ pressure analysis study[J]. The Journal of Physical Chemistry C, 2018, 122(16): 8829-8835. DOI: 10. 1021/acs.jpcc.8b01873.
|
16 |
WENG S T, WU S Y, LIU Z P, et al. Localized-domains staging structure and evolution in lithiated graphite[J]. Carbon Energy, 2023, 5(1): e224. DOI: 10.1002/cey2.224.
|
17 |
SCHMITT J, KRAFT B, SCHMIDT J P, et al. Measurement of gas pressure inside large-format prismatic lithium-ion cells during operation and cycle aging[J]. Journal of Power Sources, 2020, 478: 228661. DOI: 10.1016/j.jpowsour.2020.228661.
|
18 |
PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194. DOI: 10.1149/1.1837571.
|
19 |
CLERICI D, MOCERA F, SOMÀ A. Electrochemical-mechanical multi-scale model and validation with thickness change measurements in prismatic lithium-ion batteries[J]. Journal of Power Sources, 2022, 542: 231735. DOI: 10.1016/j.jpowsour. 2022.231735.
|
20 |
DIDIER C, PANG W K, GUO Z P, et al. Phase evolution and intermittent disorder in electrochemically lithiated graphite determined using in operando neutron diffraction[J]. Chemistry of Materials, 2020, 32(6): 2518-2531. DOI: 10.1021/acs.chemmater.9b05145.
|
21 |
HAN B, ZOU Y C, XU G Y, et al. Additive stabilization of SEI on graphite observed using cryo-electron microscopy[J]. Energy & Environmental Science, 2021, 14(9): 4882-4889. DOI: 10.1039/d1ee01678d.
|
22 |
刘晓梅, 姚斌, 谢乐琼, 等. 磷酸铁锂动力电池常温循环衰减机理分析[J]. 储能科学与技术, 2021, 10(4): 1338-1343. DOI: 10.19799/j.cnki.2095-4239.2021.0144.
|
|
LIU X M, YAO B, XIE L Q, et al. Analysis of the capacity fading mechanism in lithium iron phosphate power batteries cycled at ambient temperatures[J]. Energy Storage Science and Technology, 2021, 10(4): 1338-1343. DOI: 10.19799/j.cnki.2095-4239.2021. 0144.
|