1 |
彭鹏, 杨瑞鑫, 孙万洲, 等. 基于容量增量分析的锂离子电池容量估计方法[J/OL]. 机械工程学报, 2024: 1-10. (2024-12-13). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=JXXB20241212014&dbname=CJFD&dbcode=CJFQ.
|
|
PENG P, YANG R X, SUN W Z, et al. Capacity estimation method of lithium-ion battery based on capacity increment analysis[J/OL]. Journal of Mechanical Engineering, 2024: 1-10. (2024-12-13). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=JXXB20241212014&dbname=CJFD&dbcode=CJFQ.
|
2 |
XU Y H, ZHANG H G, YANG Y F, et al. Optimization of energy management strategy for extended range electric vehicles using multi-island genetic algorithm[J]. Journal of Energy Storage, 2023, 61: 106802. DOI: 10.1016/j.est.2023.106802.
|
3 |
XIA F, TANG C, CHEN J J. Online two-dimensional filter for anti-interference aging features extraction to accurately predict the battery health[J]. Measurement, 2024, 234: 114758. DOI: 10.1016/j.measurement.2024.114758.
|
4 |
许培德, 刘康, 康龙云, 等. 基于弛豫电压和BO-DNN的锂离子电池健康状态估计[J/OL]. 电源学报, 2024: 1-14. (2024-12-04). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=DYXB20241203001&dbname=CJFD&dbcode=CJFQ.
|
|
XU P D, LIU K, KANG L Y, et al. State of health estimation of lithium-ion battery based on relaxation voltage and BO-DNN[J/OL]. Journal of Power Supply, 2024: 1-14. (2024-12-04). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=DYXB20241203001&dbname=CJFD&dbcode=CJFQ.
|
5 |
CHAE S G, BAE S J, OH K Y. State-of-health estimation and remaining useful life prediction of lithium-ion batteries using DnCNN-CNN[J]. Journal of Energy Storage, 2025, 106: 114826. DOI: 10.1016/j.est.2024.114826.
|
6 |
SUN J, FAN C Q, YAN H Y. SOH estimation of lithium-ion batteries based on multi-feature deep fusion and XGBoost[J]. Energy, 2024, 306: 132429. DOI: 10.1016/j.energy.2024.132429.
|
7 |
陈峥, 陈洋, 申江卫, 等. 基于优化支持向量回归算法的锂离子电池可用容量估计[J]. 储能科学与技术, 2023, 12(10): 3203-3213. DOI: 10.19799/j.cnki.2095-4239.2023.0387.
|
|
CHEN Z, CHEN Y, SHEN J W, et al. Available capacity estimation of lithium-ion batteriesbased on the optimized support vector regression algorithm[J]. Energy Storage Science and Technology, 2023, 12(10): 3203-3213. DOI: 10.19799/j.cnki.2095-4239.2023. 0387.
|
8 |
SUN H L, SUN J R, ZHAO K, et al. Data-driven ICA-Bi-LSTM-combined lithium battery SOH estimation[J]. Mathematical Problems in Engineering, 2022, 2022(1): 9645892. DOI: 10.1155/2022/9645892.
|
9 |
LI X Y, YUAN C G, LI X H, et al. State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression[J]. Energy, 2020, 190: 116467. DOI: 10.1016/j.energy.2019.116467.
|
10 |
LI X, JIANG J C, WANG L Y, et al. A capacity model based on charging process for state of health estimation of lithium ion batteries[J]. Applied Energy, 2016, 177: 537-543. DOI: 10.1016/j.apenergy.2016.05.109.
|
11 |
BIAN X L, LIU L C, YAN J Y. A model for state-of-health estimation of lithium ion batteries based on charging profiles[J]. Energy, 2019, 177: 57-65. DOI: 10.1016/j.energy.2019.04.070.
|
12 |
HE J T, WEI Z B, BIAN X L, et al. State-of-health estimation of lithium-ion batteries using incremental capacity analysis based on voltage-capacity model[J]. IEEE Transactions on Transportation Electrification, 2020, 6(2): 417-426. DOI: 10.1109/TTE.2020.299 4543.
|
13 |
HE J T, MENG S J, LI X Y, et al. Partial charging-based health feature extraction and state of health estimation of lithium-ion batteries[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(1): 166-174. DOI: 10.1109/JESTPE. 2022.3143831.
|
14 |
WU C L, FU J C, HUANG X R, et al. Lithium-ion battery health state prediction based on VMD and DBO-SVR[J]. Energies, 2023, 16(10): 3993. DOI: 10.3390/en16103993.
|
15 |
FU J C, WU C L, WANG J W, et al. Lithium-ion battery SOH prediction based on VMD-PE and improved DBO optimized temporal convolutional network model[J]. Journal of Energy Storage, 2024, 87: 111392. DOI: 10.1016/j.est.2024.111392.
|
16 |
YUAN Z F, TIAN T, HAO F C, et al. A hybrid neural network based on variational mode decomposition denoising for predicting state-of-health of lithium-ion batteries[J]. Journal of Power Sources, 2024, 609: 234697. DOI: 10.1016/j.jpowsour. 2024.234697.
|
17 |
LI Y, WANG S L, CHEN L, et al. Multiple layer kernel extreme learning machine modeling and eugenics genetic sparrow search algorithm for the state of health estimation of lithium-ion batteries[J]. Energy, 2023, 282: 128776. DOI: 10.1016/j.energy. 2023.128776.
|
18 |
王琛, 闵永军. 基于容量增量曲线与GWO-GPR的锂离子电池SOH估计[J]. 储能科学与技术, 2023, 12(11): 3508-3518. DOI: 10. 19799/j.cnki.2095-4239.2023.0458.
|
|
WANG C, MIN Y J. SOH estimation of lithium-ion batteries based on capacity increment curve and GWO-GPR[J]. Energy Storage Science and Technology, 2023, 12(11): 3508-3518. DOI: 10. 19799/j.cnki.2095-4239.2023.0458.
|
19 |
陈峥, 李磊磊, 舒星, 等. 基于改进容量增量分析法的锂电池可用容量估计[J]. 中国公路学报, 2022, 35(8): 20-30. DOI: 10.19721/j.cnki.1001-7372.2022.08.003.
|
|
CHEN Z, LI L L, SHU X, et al. Estimation of available capacity for lithium-ion battery based on improved increment capacity analysis[J]. China Journal of Highway and Transport, 2022, 35(8): 20-30. DOI: 10.19721/j.cnki.1001-7372.2022.08.003.
|
20 |
HE J T, BIAN X L, LIU L C, et al. Comparative study of curve determination methods for incremental capacity analysis and state of health estimation of lithium-ion battery[J]. Journal of Energy Storage, 2020, 29: 101400. DOI: 10.1016/j.est.2020. 101400.
|
21 |
WEN J P, CHEN X, LI X H, et al. SOH prediction of lithium battery based on IC curve feature and BP neural network[J]. Energy, 2022, 261: 125234. DOI: 10.1016/j.energy.2022.125234.
|
22 |
陈峥, 彭月, 胡竞元, 等. 基于短期充电数据和增强鲸鱼优化算法的锂离子电池容量预测[J]. 储能科学与技术, 2025, 14(1): 319-330. DOI: 10.19799/j.cnki.2095-4239.2024.0686.
|
|
CHEN Z, PENG Y, HU J Y, et al. Lithium battery capacity prediction based on short-term charging data and an enhanced whale optimization algorithm[J]. Energy Storage Science and Technology, 2025, 14(1): 319-330. DOI: 10.19799/j.cnki.2095-4239.2024.0686.
|
23 |
LI Z H, BAI F, ZUO H F, et al. Remaining useful life prediction for lithium-ion batteries based on iterative transfer learning and mogrifier LSTM[J]. Batteries, 2023, 9(9): 448. DOI: 10.3390/batteries9090448.
|
24 |
ZHU T, WANG S L, FAN Y C, et al. An improved dung beetle optimizer- hybrid kernel least square support vector regression algorithm for state of health estimation of lithium-ion batteries based on variational model decomposition[J]. Energy, 2024, 306: 132464. DOI: 10.1016/j.energy.2024.132464.
|
25 |
LI X B, FAN D Q, LIU X T, et al. State of health estimation for lithium-ion batteries based on improved bat algorithm optimization kernel extreme learning machine[J]. Journal of Energy Storage, 2024, 101: 113756. DOI: 10.1016/j.est.2024. 113756.
|