储能科学与技术

• XXXX •    

基于白鹭群优化高斯过程回归的锂电池SOH估计方法

巫春玲1,2(), 王立顶1,2, 卢勇1,2, 耿莉敏1,2, 陈昊1,2, 孟锦豪3   

  1. 1.长安大学 能源与电气工程学院,西安,710064
    2.交通新能源开发、应用与汽车节能技术陕西省重点实验室,西安,710064
    3.西安交通大学 电气工程学院,西安,710049
  • 收稿日期:2025-01-06 修回日期:2025-02-17 出版日期:2025-02-25
  • 作者简介:巫春玲(1978—),女,博士,副教授,储能锂离子电池管理系统研究、新型电力系统储能技术,E-mail:wuchl@chd.edu.cn
  • 基金资助:
    国家重点研发计划项目(2021YFB2601300);陕西省重点研发计划(2022GY-193);陕西省教育厅服务地方专项科学研究计划项目(23JE021);陕西省创新能力支撑计划项目(2021TD-28)

Lithium-ion batteries SOH estimation based on gaussian processed regression optimized by egret swarm optimization

Chunling WU1,2(), Liding WANG1,2, Yong Lu1,2, Yao MA1,2, Hao Chen1,2, Jinhao Meng3   

  1. 1.School of Energy and Electrical Engineering, Chang' an University, Xi'an 710064, Shaanxi Province, China
    2.Shaanxi Key Laboratory of Transportation New Energy Development, Application and Vehicle Energy Saving Technology, Xi'an 710064, Shaanxi Province, China
    3.School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi Province, China
  • Received:2025-01-06 Revised:2025-02-17 Online:2025-02-25

摘要:

锂离子电池健康状态(State of Health, SOH)估计直接影响锂电池系统的安全性与可靠性,是电池管理系统中的一项重要功能。针对现有数据驱动的SOH估计方法中存在的缺乏不确定性表达、训练数据与测试数据未完全解耦等问题,本文提出了一种基于白鹭群优化(Egret Swarm Optimization Algorithm, ESOA)与高斯过程回归(Gaussian Process Regression, GPR)相结合的SOH估计方法。首先,从同类电池的充电电压、电流及弛豫电压信息中提取与电池老化相关的健康特征,并通过Pearson相关分析法筛选出与电池容量相关性高的健康特征。随后,采用平方指数核函数的高斯过程回归模型进行SOH估计,采用白鹭群优化算法优化GPR模型中超参数。最后,选取同济大学数据集中的NCA和NCM两类电池数据进行实验,验证所提模型的准确性与鲁棒性。实验结果表明,所提方法能够有效提高SOH估计的精度与可靠性。对于所测电池类型中,SOH估计误差的最大RMSE和MAE分别为0.0028和0.22%,相较于传统的GPR模型,误差指标分别降低了58.82%和57.69%。此外,该方法还能够实现SOH区间估计避免高估电池SOH造成的安全问题。

关键词: 锂电池, 健康状态, 白鹭群优化算法, 高斯过程回归, 区间估计

Abstract:

The estimation of the State of Health (SOH) of lithium-ion batteries directly impacts the safety and reliability of battery systems and is a crucial function of battery management systems. Addressing the issues in existing data-driven SOH estimation methods, such as the lack of uncertainty representation and incomplete decoupling of training and testing data, this paper proposes an SOH estimation method based on the Egret Swarm Optimization Algorithm (ESOA) and Gaussian Process Regression (GPR). First, health features related to battery aging are extracted from the charging voltage, current, and relaxation voltage data of similar batteries, and features with high correlation to battery capacity are selected through Pearson correlation analysis. Subsequently, a Gaussian Process Regression model with a squared exponential kernel function is employed for SOH estimation, with the hyperparameters of the GPR model optimized using the Egret Swarm Optimization Algorithm. Finally, the proposed model is validated using NCA and NCM battery datasets from Tongji University to assess its accuracy and robustness. Experimental results demonstrate that the proposed method effectively improves the precision and reliability of SOH estimation. For the tested battery types, the maximum RMSE and MAE of SOH estimation errors are 0.0028 and 0.22%, respectively, representing improvements of 58.82% and 57.69% compared to conventional GPR models. Furthermore, the method enables SOH interval estimation, thereby avoiding safety risks caused by overestimating battery SOH.

Key words: Lithium-ion battery, State of health, Egret swarm optimization algorithm, Gaussian process regression, Interval Estimation

中图分类号: