储能科学与技术 ›› 2025, Vol. 14 ›› Issue (7): 2752-2760.doi: 10.19799/j.cnki.2095-4239.2025.0097

• 第十三届储能国际峰会暨展览会专辑 • 上一篇    下一篇

电热耦合诱导三元锂离子电池热失控特性

熊峰1(), 孔得朋1(), 平平2, 张越1, 任宪通1, 吕耀1   

  1. 1.中国石油大学(华东)机电工程学院
    2.中国石油大学(华东)化学化工学院,山东 青岛 266580
  • 收稿日期:2025-01-27 修回日期:2025-03-04 出版日期:2025-07-28 发布日期:2025-07-11
  • 通讯作者: 孔得朋 E-mail:upcxiongfeng@163.com;kongdepeng@upc.edu.cn
  • 作者简介:熊峰(2002—),男,硕士研究生,研究方向为锂离子电池热安全,E-mail:upcxiongfeng@163.com
  • 基金资助:
    国际锂离子电池储能安全评价关键技术合作研发项目(2022YFE0207400)

Study on the characteristics of electrothermal coupling-induced thermal runaway of ternary lithium-ion batteries

Feng XIONG1(), Depeng KONG1(), Ping PING2, Yue ZHANG1, Xiantong REN1, Yao LV1   

  1. 1.College of Mechanical and Electrical Engineering, China University of Petroleum (East China)
    2.College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
  • Received:2025-01-27 Revised:2025-03-04 Online:2025-07-28 Published:2025-07-11
  • Contact: Depeng KONG E-mail:upcxiongfeng@163.com;kongdepeng@upc.edu.cn

摘要:

锂电池目前广泛应用于电化学储能和新能源汽车领域,其热失控造成的起火问题严重威胁着人们的生命和财产安全,制约电化学储能和新能源汽车行业的发展。目前,对锂离子电池热失控的研究大多聚焦于单一滥用工况下的热失控过程,针对多种滥用工况引发热失控的研究仍较为稀缺,电热耦合诱发热失控的内部机理也尚不明确。本工作以58 Ah三元锂离子电池单体为研究对象,深入探究了电池在电热共同作用下的热失控特性,分析了电热耦合与单一工况的热失控特性区别、不同过充程度和不同加热功率对电热耦合下热失控特性的影响,结果表明,电热耦合滥用下的电池热失控进展更快,热失控和开阀时间更早,排气和喷射火阶段持续时间更短,并且拥有更低的热失控触发温度和更高的热失控最大温度,热失控危险程度显著提升;高荷电状态(SOC)的电池拥有更高的热失控风险,100 W加热功率电热耦合条件下的开阀和热失控的SOC边界分别在120%~125%SOC和125%~128%SOC之间;100 W和200 W加热功率下电池电压变化与单一过充工况类似而在300 W以上加热功率下与单一过热类似,说明在低加热功率下电热耦合内部反应机理更类似于过充,但是在高加热功率下热作用占主导;电热耦合下电池在高加热功率时的热失控进展更快,开阀和热失控的时间更早,但是在低加热功率下的热失控程度更加剧烈,拥有更猛烈的喷发行为和更高的热失控最大温度。本文可对大容量三元锂离子电池在多滥用条件下安全性能的提升提供一定参考。

关键词: 三元锂离子电池, 热失控, 电热耦合, 过充程度, 加热功率

Abstract:

Lithium-ion batteries are widely used in electrochemical energy storage and new energy vehicles. Thermal runaway-induced fires in these batteries pose significant threats to human life and property, restricting the development of electrochemical energy storage and new energy vehicle industries. Current research on lithium-ion battery thermal runaway mainly focuses on the phenomenon under single-abuse conditions. Studies on thermal runaway events triggered by multiple abuse are relatively scarce. Furthermore, the internal mechanisms of thermal runaway induced by electrothermal coupling are not yet well understood. This study investigated the thermal runaway characteristics of a 58 Ah ternary lithium-ion battery cell under the combined effects of electrical and thermal abuse. The differences in thermal runaway characteristics between electrothermal coupling and single abuse conditions were analyzed. Additionally, the effects of different overcharge levels and heating power on thermal runaway behavior under electrothermal coupling were examined. The results revealed that under electrothermal coupling abuse, thermal runaway progresses more rapidly, with an earlier onset of thermal runaway and valve opening, shorter venting and flame-ejection durations, a lower thermal runaway trigger temperature, and a higher peak thermal runaway temperature. These effects significantly raise the risk level. Batteries with a high state of charge (SOC) exhibit a greater risk of thermal runaway. The SOC boundaries for valve opening and thermal runaway for 100 W heating power under electrothermal coupling conditions were determined to be 120% SOC—125% SOC and 125% SOC—128% SOC, respectively. At 100 W and 200 W heating power, the battery voltage variation was similar to that under single overcharge conditions, while at heating powers exceeding 300 W, the variation resembled single overheating conditions. This result indicates that at low heating powers, the internal reaction mechanism under electrothermal coupling is closer to overcharging, whereas at high heating powers, thermal effects dominate. Under electrothermal coupling, thermal runaway progresses more rapidly at high heating powers, with an earlier valve opening and thermal runaway onset. However, at low heating powers, thermal runaway is more severe, exhibiting more intense ejection behavior and a higher peak thermal runaway temperature. Thus, this study provides valuable insights to enhance the safety performance of large-capacity ternary lithium-ion batteries under multiple abuse conditions.

Key words: ternary lithium-ion battery, thermal runaway, electro-thermal coupling, overcharge level, heating power

中图分类号: