[1] |
SONG C F, LIU Q L, JI N, et al. Alternative pathways for efficient CO2 capture by hybrid processes—A review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 215-231. DOI: 10.1016/j.rser.2017.09.040.
|
[2] |
WEI Y M, WANG J W, CHEN T Q, et al. Frontiers of low-carbon technologies: Results from bibliographic coupling with sliding window[J]. Journal of Cleaner Production, 2018, 190: 422-431. DOI: 10.1016/j.jclepro.2018.04.170.
|
[3] |
李琛, 董诗婕. 聚焦美丽中国建设 减污降碳绿色转型[J]. 中国水泥, 2024(3): 14-17.
|
|
LI C, DONG S J. Focus on beautiful China and build a green transformation to reduce pollution and carbon[J]. China Cement, 2024(3): 14-17.
|
[4] |
LI H C, DING R C, SU W, et al. A comprehensive performance comparison between compressed air energy storage and compressed carbon dioxide energy storage[J]. Energy Conversion and Management, 2024, 319: 118972. DOI: 10.1016/j.enconman. 2024.118972.
|
[5] |
李玉平. 压缩二氧化碳储能系统的热力学性能分析[D]. 北京: 华北电力大学, 2018.
|
|
LI Y P. Thermal performance analysis of the compressed carbon dioxide energy storage system[D]. Beijing: North China Electric Power University, 2018.
|
[6] |
WAN Y K, WU C, LIU Y, et al. A technical feasibility study of a liquid carbon dioxide energy storage system: Integrated component design and off-design performance analysis[J]. Applied Energy, 2023, 350: 121797. DOI: 10.1016/j.apenergy. 2023.121797.
|
[7] |
ZHAO P, XU W P, ZHANG S Q, et al. Components design and performance analysis of a novel compressed carbon dioxide energy storage system: A pathway towards realizability[J]. Energy Conversion and Management, 2021, 229: 113679. DOI: 10.1016/j.enconman.2020.113679.
|
[8] |
XU M J, ZHAO P, HUO Y W, et al. Thermodynamic analysis of a novel liquid carbon dioxide energy storage system and comparison to a liquid air energy storage system[J]. Journal of Cleaner Production, 2020, 242: 118437. DOI: 10.1016/j.jclepro. 2019.118437.
|
[9] |
HAO J H, ZHENG P Y, LI Y N, et al. Study on the operational feasibility domain of combined heat and power generation system based on compressed carbon dioxide energy storage[J]. Energy, 2024, 291: 130122. DOI: 10.1016/j.energy.2023.130122.
|
[10] |
FU H L, SHI J, YUAN J Q, et al. Thermodynamic analysis of photothermal-assisted liquid compressed CO2 energy storage system hybrid with closed-cycle drying[J]. Journal of Energy Storage, 2023, 66: 107415. DOI: 10.1016/j.est.2023.107415.
|
[11] |
TANG D, LI Y, LIU Y J, et al. Factors affecting compressed carbon dioxide energy storage system in deep aquifers[J]. Bulletin of Engineering Geology and the Environment, 2024, 83(10): 407. DOI: 10.1007/s10064-024-03887-4.
|
[12] |
LIU Z, LIU X, ZHANG W F, et al. Thermodynamic analysis on the feasibility of a liquid energy storage system using CO2-based mixture as the working fluid[J]. Energy, 2022, 238: 121759. DOI: 10.1016/j.energy.2021.121759.
|
[13] |
DENG Y Y, WANG J F, CAO Y, et al. Technical and economic evaluation of a novel liquid CO2 energy storage-based combined cooling, heating, and power system characterized by direct refrigeration with phase change[J]. Applied Thermal Engineering, 2023, 230: 120833. DOI: 10.1016/j.applthermaleng.2023.120833.
|
[14] |
MA H Y, LIU Z. Preliminary thermodynamic analysis of a carbon dioxide binary mixture cycled energy storage system with low pressure stores[J]. Energy, 2022, 246: 123346. DOI: 10.1016/j.energy.2022.123346.
|
[15] |
XU W P, ZHAO P, WANG J F, et al. Comprehensive thermo-economic analysis of an isobaric compressed CO2 energy storage system: Improvement of the thermodynamic pathway[J]. Energy Conversion and Management, 2024, 322: 119088. DOI: 10.1016/j.enconman.2024.119088.
|
[16] |
BARTELA Ł, SKOREK-OSIKOWSKA A, DYKAS S, et al. Thermodynamic and economic assessment of compressed carbon dioxide energy storage systems using a post-mining underground infrastructure[J]. Energy Conversion and Management, 2021, 241: 114297. DOI: 10.1016/j.enconman. 2021.114297.
|
[17] |
KIM Y M, SHIN D G, FAVRAT D. Operating characteristics of constant-pressure compressed air energy storage (CAES) system combined with pumped hydro storage based on energy and exergy analysis[J]. Energy, 2011, 36(10): 6220-6233. DOI: 10.1016/j.energy.2011.07.040.
|
[18] |
NIELSEN L, LEITHNER R. Dynamic simulation of an innovative compressed air energy storage plant-Detailed modelling of the storage cavern[J]. Wseas Transactions on Power Systems, 2009, 4(7/9): 253-263.
|
[19] |
AHMAD M, OSCH M B, BUIT L, et al. Study of the thermohydraulics of CO2 discharge from a high pressure reservoir[J]. International Journal of Greenhouse Gas Control, 2013, 19: 63-73. DOI: 10.1016/j.ijggc.2013.08.004.
|
[20] |
张娜, 林汝谋, 蔡睿贤. 压气机特性通用数学表达式[J]. 工程热物理学报, 1996, 17(1): 21-24.
|
|
ZHANG N, LIN R M, CAI R X. General formulas for axial compressor performance estimation[J]. Journal of Engineering Thermophysics, 1996, 17(1): 21-24.
|
[21] |
ZHAO M, ZHU Y, HU D, et al. Off-design performance of supercritical compressed carbon dioxide energy storage system[A/OL]. Volume 42: Energy Transitions toward Carbon Neutrality: Part V, 2024[2025-02-26]. https://www.energy-proceedings.org/ p=10997. DOI:10.46855/energy-proceedings-10997.
|
[22] |
卢韶光, 林汝谋. 燃气透平稳态全工况特性通用模型[J]. 工程热物理学报, 1996, 17(4): 404-407.
|
|
LU S G, LIN R M. Gas turbine steady-state design and off-design characteristic general model[J]. Journal of Engineering Thermophysics, 1996, 17(4): 404-407.
|