[1] |
徐国栋, 王坚嵘, 石一峰, 等. 电池储能电站安全问题分析与对策[J]. 电力安全技术, 2020, 22(9): 60-63.
|
|
XU G D, WANG J R, SHI Y F, et al. Analysis and countermeasures for safety problems of battery energy storage power stations[J]. Electric Safety Technology, 2020, 22(9): 60-63.
|
[2] |
储旺. 韩国风电场储能电站起火爆炸[J]. 电力设备管理, 2018(8): 97-98.
|
|
CHU W. Korean wind farm energy storage power station fire explosion[J]. Electric Power Equipment Management, 2018(8): 97-98.
|
[3] |
WANG Q S, PING P, ZHAO X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224. DOI: 10.1016/j.jpowsour.2012.02.038.
|
[4] |
陈吉清, 刘蒙蒙, 兰凤崇. 三元动力电池及其成组后的过充安全性试验[J]. 吉林大学学报(工学版), 2019, 49(4): 1072-1080. DOI: 10. 13229/j.cnki.jdxbgxb20180159.
|
|
CHEN J Q, LIU M M, LAN F C. Experiment on overcharge safety of NCM battery and battery pack[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(4): 1072-1080. DOI: 10.13229/j.cnki.jdxbgxb20180159.
|
[5] |
WANG K, WU D J, CHANG C Y, et al. Charging rate effect on overcharge-induced thermal runaway characteristics and gas venting behaviors for commercial lithium iron phosphate batteries[J]. Journal of Cleaner Production, 2024, 434: 139992. DOI: 10.1016/j.jclepro.2023.139992.
|
[6] |
HUANG Z H, YU Y, DUAN Q L, et al. Heating position effect on internal thermal runaway propagation in large-format lithium iron phosphate battery[J]. Applied Energy, 2022, 325: 119778. DOI: 10.1016/j.apenergy.2022.119778.
|
[7] |
WANG Z, YANG H, LI Y, et al. Thermal runaway and fire behaviors of large-scale lithium ion batteries with different heating methods[J]. Journal of Hazardous Materials, 2019, 379: 120730. DOI: 10.1016/j.jhazmat.2019.06.007.
|
[8] |
孙旭东. 车用锂离子动力电池热-电滥用下热失控特性研究[D]. 镇江: 江苏大学, 2020. DOI: 10.27170/d.cnki.gjsuu.2020.000909.
|
|
SUN X D. Research on thermal runaway characteristics of vehicle lithium-ion power battery under thermal-electrical abuse[D]. Zhenjiang: Jiangsu University, 2020. DOI: 10.27170/d.cnki.gjsuu.2020.000909.
|
[9] |
许金龙, 沈佳妮, 王乾坤, 等. 基于锂离子电池热失控模型的电热耦合滥用条件分析[J]. 储能科学与技术, 2021, 10(4): 1344-1352. DOI: 10.19799/j.cnki.2095-4239.2021.0064.
|
|
XU J L, SHEN J N, WANG Q K, et al. Analysis of electrothermal coupling abuse condition based on thermal runaway model of lithium-ion battery[J]. Energy Storage Science and Technology, 2021, 10(4): 1344-1352. DOI: 10.19799/j.cnki.2095-4239.2021.0064.
|
[10] |
ZHAO C P, WANG T H, HUANG Z, et al. Experimental study on thermal runaway of fully charged and overcharged lithium-ion batteries under adiabatic and side-heating test[J]. Journal of Energy Storage, 2021, 38: 102519. DOI: 10.1016/j.est.2021.102519.
|
[11] |
HU J, LIU T, WANG X S, et al. Investigation on thermal runaway of 18, 650 lithium ion battery under thermal abuse coupled with charging[J]. Journal of Energy Storage, 2022, 51: 104482. DOI: 10.1016/j.est.2022.104482.
|
[12] |
FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. DOI: 10.1016/j.ensm.2017.05.013.
|
[13] |
HE X F, DU J H, YANG S Z, et al. Research on overcharge thermal runaway behavior analysis and early warning algorithm of ternary lithium battery pack[J]. Journal of Applied Electrochemistry, 2025, 55(2): 273-288. DOI: 10.1007/s10800-024-02184-y.
|
[14] |
KANG R X, JIA C X, ZHAO J L, et al. Effects of capacity on the thermal runaway and gas venting behaviors of large-format lithium iron phosphate batteries induced by overcharge[J]. Journal of Energy Storage, 2024, 87: 111523. DOI: 10.1016/j.est.2024.111523.
|
[15] |
WANG Z P, YUAN J, ZHU X Q, et al. Overcharge-to-thermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials: A comparison study[J]. Journal of Energy Chemistry, 2021, 55: 484-498. DOI: 10.1016/j.jechem.2020.07.028.
|
[16] |
LI H, CHEN H D, ZHONG G B, et al. Experimental study on thermal runaway risk of 18650 lithium ion battery under side-heating condition[J]. Journal of Loss Prevention in the Process Industries, 2019, 61: 122-129. DOI: 10.1016/j.jlp.2019.06.012.
|
[17] |
ZHU M H, ZHANG S Y, CHEN Y, et al. Experimental and analytical investigation on the thermal runaway propagation characteristics of lithium-ion battery module with NCM pouch cells under various state of charge and spacing[J]. Journal of Energy Storage, 2023, 72: 108380. DOI: 10.1016/j.est.2023.108380.
|
[18] |
HUANG Z H, SHEN T, JIN K Q, et al. Heating power effect on the thermal runaway characteristics of large-format lithium ion battery with Li(Ni1/3Co1/3Mn1/3)O2 as cathode[J]. Energy, 2022, 239: 121885. DOI: 10.1016/j.energy.2021.121885.
|
[19] |
ZHOU Z Z, ZHOU X D, PENG Y, et al. Quantitative study on the thermal failure features of lithium iron phosphate batteries under varied heating powers[J]. Applied Thermal Engineering, 2021, 185: 116346. DOI: 10.1016/j.applthermaleng.2020.116346.
|