储能科学与技术 ›› 2025, Vol. 14 ›› Issue (6): 2383-2390.doi: 10.19799/j.cnki.2095-4239.2025.0063

• 储能系统与工程 • 上一篇    下一篇

活塞式重力储能系统建模与性能分析

谈家宝(), 王育飞(), 薛花   

  1. 上海电力大学电气工程学院,上海 200090
  • 收稿日期:2025-01-22 修回日期:2025-02-14 出版日期:2025-06-28 发布日期:2025-06-27
  • 通讯作者: 王育飞 E-mail:2475439832@qq.com;317500903@qq.com
  • 作者简介:谈家宝(2000—),男,硕士研究生,研究方向为重力储能系统建模及其应用研究,E-mail:2475439832@qq.com
  • 基金资助:
    上海市科技创新行动计划项目(22010501400)

Modeling and performance analysis of piston gravity energy storage system

Jiabao TAN(), Yufei WANG(), Hua XUE   

  1. College of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
  • Received:2025-01-22 Revised:2025-02-14 Online:2025-06-28 Published:2025-06-27
  • Contact: Yufei WANG E-mail:2475439832@qq.com;317500903@qq.com

摘要:

为探究不同设计参数下活塞式重力储能系统性能的变化规律,基于模块化建模思想,建立活塞式重力储能系统的活塞运动子模型、密闭管道腔室压力子模型和水泵水轮机功率子模型,以模拟活塞式重力储能系统动态运动过程与能量传递特性。对活塞式重力储能系统充放电过程进行分析,得到总存储能量、充放电效率和能量密度表达式,同时考虑密闭管道高度、活塞高度和活塞直径三个设计参数,分析各参数和各参数比值变化对储能系统总存储能量、充放电效率和能量密度的影响。研究结果表明:增大密闭管道高度可提高总存储能量和能量密度,增大活塞高度可提高充放电效率,增大活塞直径可显著提高总存储能量;活塞高度与密闭管道高度之比增大,充放电效率显著提高,能量密度和总存储能量先增大后减小;活塞直径与活塞高度之比增大,充放电效率和能量密度先增大后趋于稳定,总存储能量显著提高。研究结果为活塞式重力储能系统设计参数选择提供了理论依据,有助于推动活塞式重力储能系统的发展与应用。

关键词: 重力储能, 建模, 性能分析, 充放电效率, 能量密度

Abstract:

To investigate the performance variation of piston gravity energy storage systems (PGESSs) under different design parameters, a modular modeling approach was adopted to develop submodels for piston motion, confined pipe chamber pressure, and pump-turbine power. These submodels were used to simulate the dynamic motion and energy transfer characteristics of the PGESS. The charging and discharging processes were analyzed to derive expressions for total storage energy, charge-discharge efficiency, and energy density. The influence of key parameters namely, the height of the confined pipeline, the piston height, and the piston diameter was examined individually and in terms of their ratios. Results indicate that increasing the height of the confined pipe enhances both total storage energy and energy density; increasing piston height improves charge-discharge efficiency; and increasing piston diameter significantly boosts total storage energy. When the piston height-to-pipe height ratio increases, charge-discharge efficiency improves notably, while energy density and total storage energy initially rise and then decline. As the piston diameter-to-height ratio increases, both charge-discharge efficiency and energy density first increase and then stabilize. A similar trend is observed when both piston diameter and height increase. These findings provide a theoretical basis for optimal design parameter selection in PGESSs, supporting their further development and application.

Key words: gravity energy storage, modeling, performance analysis, charge-discharge efficiency, energy density

中图分类号: