1 |
LIU H X, LIU C, ZHOU Y H, et al. The application of Al2O3 in the separators and solid electrolytes of lithium-ion battery: A review[J]. Energy Storage Materials, 2024, 71: 103575. DOI: 10.1016/j.ensm.2024.103575.
|
2 |
MATSUMOTO F, YAMADA M, TSUTA M, et al. Review of the structure and performance of through-holed anodes and cathodes prepared with a picosecond pulsed laser for lithium-ion batteries[J]. International Journal of Extreme Manufacturing, 2023, 5(1): 012001. DOI: 10.1088/2631-7990/aca1f0.
|
3 |
XIAO J W, ZHANG B, LIU J X, et al. NaSICON-type materials for lithium-ion battery applications: Progress and challenges[J]. Nano Energy, 2024, 127: 109730. DOI: 10.1016/j.nanoen. 2024.109730.
|
4 |
武美玲, 牛磊, 李世友, 等. 正极预锂化添加剂用于锂离子电池的研究进展[J]. 储能科学与技术, 2024, 13(3): 759-769. DOI: 10.19799/j.cnki.2095-4239.2023.0809.
|
|
WU M L, NIU L, LI S Y, et al. Research progress on cathode prelithium additives used in lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(3): 759-769. DOI: 10.19799/j.cnki.2095-4239.2023.0809.
|
5 |
YU X Q, CHEN R S, GAN L Y, et al. Battery safety: From lithium-ion to solid-state batteries[J]. Engineering, 2023, 21: 9-14. DOI: 10.1016/j.eng.2022.06.022.
|
6 |
王特, 蒋立, 田晓录, 等. 锂离子电池安全材料的研究进展[J]. 化工进展, 2021, 40(6): 3132-3142. DOI: 10.16085/j.issn.1000-6613.2020-1416.
|
|
WANG T, JIANG L, TIAN X L, et al. Research progress of lithium-ion battery safety materials[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3132-3142. DOI: 10.16085/j.issn.1000-6613.2020-1416.
|
7 |
FENG X N, REN D S, HE X M, et al. Mitigating the thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. DOI: 10.1016/j.joule.2020.02.010.
|
8 |
WU Y, ZHANG W J, LI Y L, et al. Solid-state interphases design for high-safety, high-voltage and long-cyclability practical batteries via ethylene carbonate-free electrolytes[J]. Energy Storage Materials, 2024, 65: 103165. DOI: 10.1016/j.ensm. 2023.103165.
|
9 |
申菲. 锂离子电池安全性及预警措施研究[J]. 储能科学与技术, 2024, 13(10): 3515-3517. DOI: 10.19799/j.cnki.2095-4239.2024.0929.
|
|
SHEN F. Research on the safety and early warning measures of the lithium-ion battery[J]. Energy Storage Science and Technology, 2024, 13(10): 3515-3517. DOI: 10.19799/j.cnki.2095-4239.2024.0929.
|
10 |
ZHANG G X, WEI X Z, WANG X Y, et al. Lithium-ion battery sudden death: Safety degradation and failure mechanism[J]. eTransportation, 2024, 20: 100333. DOI: 10.1016/j.etran.2024.100333.
|
11 |
ZHANG Z, HAN W Q. From liquid to solid-state lithium metal batteries: Fundamental issues and recent developments[J]. Nano-Micro Letters, 2023, 16(1): 24. DOI: 10.1007/s40820-023-01234-y.
|
12 |
JANEK J, ZEIER W G. Challenges in speeding up solid-state battery development[J]. Nature Energy, 2023, 8(3): 230-240. DOI: 10.1038/s41560-023-01208-9.
|
13 |
REN D S, LU L G, HUA R, et al. Challenges and opportunities of practical sulfide-based all-solid-state batteries[J]. eTransportation, 2023, 18: 100272. DOI: 10.1016/j.etran.2023.100272.
|
14 |
吴敬华, 姚霞银. 基于硫化物固体电解质全固态锂电池界面特性研究进展[J]. 储能科学与技术, 2020, 9(2): 501-514. DOI: 10.19799/j.cnki.2095-4239.2020.0065.
|
|
WU J H, YAO X Y. Recent progress in the interfaces of all-solid-state lithium batteries based on sulfide electrolytes[J]. Energy Storage Science and Technology, 2020, 9(2): 501-514. DOI: 10.19799/j.cnki.2095-4239.2020.0065.
|
15 |
RUI X Y, HUA R, REN D S, et al. In situ polymerization facilitates practical high-safety quasi-solid-state batteries[J]. Advanced Materials, 2024, 36(27): 2402401. DOI: 10.1002/adma.202402401.
|
16 |
WU Y J, ZHANG Z Q, ZHANG Q G, et al. Industrialization challenges for sulfide-based all solid state battery[J]. eTransportation, 2024, 22: 100371. DOI: 10.1016/j.etran.2024. 100371.
|
17 |
LIN J Y, CHEN S, LI J Y, et al. Chlorine-rich lithium argyrodites enables superior performances for solid-state Li-Se batteries at wide temperature range[J]. Rare Metals, 2022, 41(12): 4065-4074. DOI: 10.1007/s12598-022-02093-z.
|
18 |
LIU L H, LYU J, MO J S, et al. Flexible, high-voltage, ion-conducting composite membranes with 3D aramid nanofiber frameworks for stable all-solid-state lithium metal batteries[J]. Science China Materials, 2020, 63(5): 703-718. DOI: 10.1007/s40843-019-1240-2.
|
19 |
LUO Y, MA R, GONG Z, et al. Recent research progresses of solid-state lithium-sulfur batteries[J]. Journal of Electrochemistry, 2023, 29(3): DOI:10.13208/j.electrochem.2217007.
|
20 |
赵争光, 陈振营, 翟光群, 等. Sc/O掺杂硫化物固态电解质的制备及全固态电池性能[J]. 储能科学与技术, 2023, 12(8): 2412-2423. DOI: 10.19799/j.cnki.2095-4239.2023.0236.
|
|
ZHAO Z G, CHEN Z Y, ZHAI G Q, et al. Preparation of the Sc/O-doped sulfide electrolyte for all-solid-state batteries[J]. Energy Storage Science and Technology, 2023, 12(8): 2412-2423. DOI: 10.19799/j.cnki.2095-4239.2023.0236.
|
21 |
WU Y J, WANG S, LI H, et al. Progress in the thermal stability of all-solid-state-Li-ion-batteries[J]. InfoMat, 2021, 3(8): 827-853. DOI: 10.1002/inf2.12224.
|
22 |
STÖFFLER H, ZINKEVICH T, YAVUZ M, et al. Amorphous versus crystalline Li3PS4: Local structural changes during synthesis and Li ion mobility[J].The Journal of Physical Chemistry C, 2019, 123(16):10280-10290.DOI:10.1021/acs.jpcc.9b01425.
|
23 |
KIM T, KIM K, LEE S, et al. Thermal runaway behavior of Li6PS5Cl solid electrolytes for LiNi0.8Co0.1Mn0.1O2 and LiFePO4 in all-solid-state batteries[J]. Chemistry of Materials, 2022, 34(20): 9159-9171. DOI: 10.1021/acs.chemmater.2c02106.
|
24 |
RUI X Y, REN D S, LIU X, et al. Distinct thermal runaway mechanisms of sulfide-based all-solid-state batteries[J]. Energy & Environmental Science, 2023, 16(8): 3552-3563. DOI: 10.1039/D3EE00084B.
|
25 |
WU Y J, XU J, LU P S, et al. Thermal stability of the sulfide solid electrolyte with lithium metal[J]. Advanced Energy Materials, 2023, 13(36): 2301336. DOI: 10.1002/aenm.202301336.
|
26 |
VISHNUGOPI B S, HASAN M T, ZHOU H W, et al. Interphases and electrode crosstalk dictate the thermal stability of solid-state batteries[J]. ACS Energy Letters, 2023, 8(1): 398-407. DOI: 10.1021/acsenergylett.2c02443.
|
27 |
YANG S J, HU J K, JIANG F N, et al. Oxygen-induced thermal runaway mechanisms of Ah-level solid-state lithium metal pouch cells[J]. eTransportation, 2023, 18: 100279. DOI: 10.1016/j.etran. 2023.100279.
|