储能科学与技术 ›› 2025, Vol. 14 ›› Issue (6): 2193-2199.doi: 10.19799/j.cnki.2095-4239.2024.1203

• 储能材料与器件 • 上一篇    下一篇

基于Li10GeP12S2 全固态电池关键材料的热稳定性

张文杰1(), 任东生2, 吴宇1(), 芮新宇2(), 刘翔3(), 冯旭宁2(), 卢兰光2()   

  1. 1.北京理工大学材料学院,北京 100081
    2.清华大学车辆与运载学院,北京 100084
    3.北京 航空航天大学材料科学与工程学院,北京 100191
  • 收稿日期:2024-12-18 修回日期:2024-12-31 出版日期:2025-06-28 发布日期:2025-06-27
  • 通讯作者: 吴宇,芮新宇,刘翔,冯旭宁,卢兰光 E-mail:792442831@qq.com;wuyu@bit.edu.cn;rxy19@tsinghua.org.cn;xiangliu@buaa.edu.cn;fxn17@mail.tsinghua.edu.cn;lulg@mail.tsinghua.edu.cn
  • 作者简介:张文杰(2000—),男,硕士研究生,研究方向为全固态电池关键材料的安全性,E-mail:792442831@qq.com
  • 基金资助:
    国家重点研发计划(2022YFB3807700);国家自然科学基金(52476174)

Thermal stability of key materials in Li10GeP12S2-based all-solid-state batteries

Wenjie ZHANG1(), Dongsheng REN2, Yu WU1(), Xinyu RUI2(), Xiang LIU3(), Xuning FENG2(), Languang LU2()   

  1. 1.School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
    2.School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
    3.School of Materials Science and Engineering, Beihang University, Beijing 100191, China
  • Received:2024-12-18 Revised:2024-12-31 Online:2025-06-28 Published:2025-06-27
  • Contact: Yu WU, Xinyu RUI, Xiang LIU, Xuning FENG, Languang LU E-mail:792442831@qq.com;wuyu@bit.edu.cn;rxy19@tsinghua.org.cn;xiangliu@buaa.edu.cn;fxn17@mail.tsinghua.edu.cn;lulg@mail.tsinghua.edu.cn

摘要:

全固态锂电池具有宽工作温域、高能量密度和高功率密度等优势,是最具有潜力的下一代储能候选电池之一。硫化物电解质Li10GeP12S2(LGPS)凭借其超高的锂离子电导率(1×10-3 S/cm)吸引了研究者的广泛关注。但是,高能量密度体系下的LGPS全固态电池关键材料的热稳定性并没有被报道。本工作研究了LGPS为固态电解质,正极为LiNi0.92Co0.04Mn0.04O2(NCM92)、负极为SiC的全固态电池的热稳定性。通过差示扫描量热法(DSC)和同步热分析-质谱联用(STA-MS)技术,分析了硫化物固态电解质、正极、负极及其混合物的产热产气特性。在产热产气分析的基础上,利用扫描电子显微镜(SEM)结合能量色散X射线谱(EDS)技术、X射线衍射(XRD)和X射线光电子能谱(XPS)对不同温度下的产物成分进行了深入分析。当温度升高至200 ℃时,NCM92正极发生相变,释放大量氧气,与硫化物电解质发生轻微反应,生成P2S x 和微量SO2。当温度升高至310 ℃时,LGPS和正极混合样品发生剧烈放热反应,生成金属氧化物、金属硫化物和磷酸盐等。本研究揭示了NCM92|LGPS|SiC全固态电池关键材料的热稳定性,为全固态锂电池的材料选择和安全优化设计提供理论支持。

关键词: 全固态锂电池, Li10GeP12S2, 高能量密度, 热稳定性

Abstract:

All-solid-state lithium batteries (ASSLBs) are promising candidates for next-generation energy storage systems because of their wide operating temperature range, high energy density, and high power density. The sulfide solid electrolyte Li10GeP12S2 (LGPS) has attracted significant attention for its exceptionally high lithium-ion conductivity (1×10-3 S/cm). However, the thermal stability of key materials in LGPS-based ASSLBs under high energy density configurations has not been reported. This study examines the thermal runaway mechanisms of LGPS solid electrolytes combined with a LiNi0.92Co0.04Mn0.04O2 (NCM92) cathode and silicon-carbon anode. Differential scanning calorimetry and simultaneous thermal analysis-mass spectrometry were employed to analyze heat generation and gas evolution in solid electrolytes, electrodes, and their mixtures. Following thermal analysis, scanning electron microscopy combined with energy-dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were used to characterize the reaction products at different temperatures. At 200 ℃, the NCM92 cathode undergoes a phase transition, releasing a significant amount of oxygen that reacts mildly with the sulfide electrolyte to form P2S and trace SO2. At 310 ℃, the LGPS and the cathode mixture exhibited exothermic reactions, producing metal oxides, sulfides, and phosphates. This study elucidates the thermal stability of key materials in NCM92|LGPS|SiC ASSLBs, providing theoretical guidance for material selection and safety-oriented design optimization.

Key words: all-solid-state lithium batteries, Li10GeP12S2, high energy density, thermal stability

中图分类号: