• XXXX •
通讯作者:
常国峰
E-mail:1758001512@qq.com;changguofeng@tongji.edu.cn
作者简介:
张腾,2000,男,硕士在读,整车热管理,1758001512@qq.com
基金资助:
Teng Zhang1(), Guofeng Chang2(
)
Contact:
Guofeng Chang
E-mail:1758001512@qq.com;changguofeng@tongji.edu.cn
摘要:
锂电池组内单体特征参数(SOC、容量与内阻)的差异通过电-热耦合作用可能导致电池组的热分布不均,从而影响其性能和安全。本文考虑了锂电池在不同温度和放电深度下的动态特性,构建了电池组的二阶RC等效电路-热耦合模型,通过数值模拟分析了单体SOC、容量和内阻不一致性对并联和串联电池组热特性的影响,最终量化了不同连接模式下电池组的能量释放能力、发热率及温度分布差异。研究结果显示,SOC不一致时,并联电池组因自平衡效应释放能量379.575Ah,高于串联电池组的366.024Ah,但其发热率标准差和最高温度标准差分别为2.265W和0.62℃,显著高于串联电池组的0.475W和0.275℃,表明串联结构在热一致性上更具优势。容量不一致时,并联电池组因支路电流差异导致发热率波动更大,其温度标准差为0.421℃,较串联的0.233℃高0.188℃,且最大温差分别为1.222℃和0.670℃,进一步凸显串联的热均匀性。内阻不一致时,串联电池组平均温度为33.233℃,略高于并联的33.204℃,但其温度标准差和发热率标准差则为0.19℃和0.097W均低于并联的0.215℃和0.405W,说明串联模式能有效抑制内阻差异引发的热不均衡现象。进一步量化对比表明,SOC不一致对热一致性的影响最为显著,并联与串联的发热率最大差值分别为6.499W 和1.261W;容量不一致导致并联电池组最高温度差达到1.222℃,为串联的1.8倍;内阻不一致下,串联电池组温度标准差仅为并联的88%。研究结论表明,串联电池组在单体特征参数差异下均表现出更优的热一致性,而并联模式虽能够释放更多能量,但需通过强化热管理以应对更高的温度波动风险。本研究为电动汽车电池组热模型优化及冷却系统设计提供了关键数据支撑,对提升电池安全性与寿命具有重要参考价值。
张腾, 常国峰. 基于单体特征参数差异的电池组热特性和热一致性研究[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0127.
Teng Zhang, Guofeng Chang. Thermal Characterization and Thermal Consistency Study of Battery Packs Based on differences in monomer characteristic parameters[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0127.
1 | ZHENG Y,OUYANG M,HAN X, et al. Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles[J].Journal of Power Sources,2018,377161-188. |
2 | Plett G L. Battery management systems, Volume II: Equivalent-circuit methods[M]. Artech House, 2015. |
3 | Tian J, Liu X, Li S, et al. Lithium-ion battery health estimation with real-world data for electric vehicles[J]. Energy, 2023, 270: 126855. |
4 | Zhang C, Jiang Y, Jiang J, et al. Study on battery pack consistency evolutions and equilibrium diagnosis for serial-connected lithium-ion batteries[J]. Applied Energy, 2017, 207: 510-519. |
5 | Tian J, Wang Y, Liu C, et al. Consistency evaluation and cluster analysis for lithium-ion battery pack in electric vehicles[J]. Energy, 2020, 194: 116944. |
6 | Zhao D, Zhou Z, Zhang P, et al. Health condition assessment of satellite li-ion battery pack considering battery inconsistency and pack performance indicators[J]. Journal of Energy Storage, 2023, 60: 106604. |
7 | Zheng LF, Zhu JG, Wang GX. Differential voltage analysis based state of charge estimation methods for lithium-ion batteries using extended Kalman filter and particle filter. Energy, 2018(158) 1028-1037. |
8 | Feng F, Hu X, Liu K, et al. A practical and comprehensive evaluation method for series-connected battery pack models[J]. IEEE Transactions on Transportation Electrification, 2020, 6(2): 391-416. |
9 | Ge YL, Chen ZQ. Inconsistency Identification and State Estimation of Series-connected Lithium-ion Battery Pack Based on STF&LM Algorithm. Proceedings of the Chinese Society of Electrical Engineering, v 38, n 14, p4271-4280, 2018. |
10 | 陈峥,杨博,赵志刚,等.考虑锂电池温度和老化的荷电状态估算[J].储能科学与技术,2024,13(08):2813-2822.DOI:10.19799/j.cnki.2095-4239.2024.0141. |
CHEN Zheng, YANG Bo, ZHAO Zhigang, et al. State of charge estimation considering lithium battery temperature and aging[J]. Energy Storage Science and Technology,2024,13(08):2813-2822.DOI:10.19799/j.cnki.2095-4239.2024.0141. | |
11 | 任璞,王顺利,何明芳,等.基于内阻增加和容量衰减双重标定的锂电池健康状态评估[J].储能科学与技术,2021,10(02):738-743.DOI:10.19799/j.cnki.2095-4239.2020.0395. |
REN Pu, WANG Shunli, HE Mingfang, et al. State of health estimation of Li-ion battery based on dual calibration of internal resistance increasing and capacity fading[J] Energy Storage Science and Technology, 2021,10(02):738-743.DOI:10.19799/j.cnki.2095-4239.2020.0395. | |
12 | Zhou L, Zheng YJ, Ouyang MG. A study on parameter variation effects on battery packs for electric vehicles. Journal of Power Sources, 2017 (364) 242-252. |
13 | Barcellona S, Colnago S, Dotelli G, et al. Aging effect on the variation of Li-ion battery resistance as function of temperature and state of charge[J]. Journal of Energy Storage, 2022, 50: 104658. |
14 | Zhang YL, Xu J, Yang SC. Battery module capacity fade model based on cell voltage inconsistency and probability distribution. Advances in Mechanical Engineering. 2017(9) 1–13. |
15 | 陈国贺,吕培召,李孟涵,等.锂离子电池热失控传播特性及其抑制策略研究进展[J].储能科学与技术,2024,13(07):2470-2482.DOI:10.19799/j.cnki.2095-4239.2024.0091. |
CHEN Guohe, LYU Peizhao, LI Menghan, et al. Research progress on thermal runaway propagation characteristics of lithium-ion batteries and its inhibiting strategies[J]. Energy Storage Science and Technology, 2024,13(07):2470-2482.DOI:10.19799/j.cnki.2095-4239.2024.0091. | |
16 | Naseri F, Schaltz E, Stroe D I, et al. An enhanced equivalent circuit model with real-time parameter identification for battery state-of-charge estimation[J]. IEEE Transactions on Industrial Electronics, 2021, 69(4): 3743-3751. |
17 | He H, Xiong R, Guo H, et al. Comparison study on the battery models used for the energy management of batteries in electric vehicles[J]. Energy Conversion & Management, 2012, 64(4):113-121. |
18 | Chang GF, Cui X, Li YY. Effects of reciprocating liquid flow battery thermal management system on thermal characteristics and uniformity of large lithium-ion battery pack. International Journal of Energy Research, 2020;44:6383-6395. |
19 | Bernardi D, Pawlikowski E, Newman J. A general energy balance for battery systems. Journal of the Electrochemical Society, 1985, 132(1):5-12. |
20 | Wang Y, Zhao Y, Zhou S, et al. Impact of individual cell parameter difference on the performance of series–parallel battery packs[J]. ACS omega, 2023, 8(11): 10512-10524. |
21 | Yu Q, Huang Y, Tang A, et al. OCV-SOC-temperature relationship construction and state of charge estimation for a series–parallel lithium-ion battery pack[J]. IEEE Transactions on Intelligent Transportation Systems, 2023. |
22 | Wang B, Ji C, Wang S, et al. Study of non-uniform temperature and discharging distribution for lithium-ion battery modules in series and parallel connection[J]. Applied Thermal Engineering, 2020, 168: 114831. |
23 | Fan X, Zhang W, Wang Z, et al. Simplified battery pack modeling considering inconsistency and evolution of current distribution[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(1): 630-639. |
24 | Zheng YJ, Ouyang MG, Lu LG. Cell state-of-charge inconsistency estimation for Li Fe PO4 battery pack in hybrid electric vehicles using mean-difference model. Applied Energy, 2013, 111(0): 571~580. |
[1] | 孙琦, 彭豪, 孟庆国, 孔德凯, 冯睿. 极限工况下储能电池包热适应性[J]. 储能科学与技术, 2024, 13(6): 2039-2043. |
[2] | 刘剑, 于立博, 吴振兴, 牟介刚. 基于风冷的锂离子电池充放电设备热特性影响研究[J]. 储能科学与技术, 2024, 13(3): 914-923. |
[3] | 李岳峰, 徐卫潘, 韦银涛, 丁纬达, 孙勇, 项峰, 吕游, 伍家祥, 夏艳. 储能锂电池包浸没式液冷系统散热设计及热仿真分析[J]. 储能科学与技术, 2024, 13(10): 3534-3544. |
[4] | 李岳峰, 韦银涛, 彭宪州, 项峰, 王杭烽, 孙勇, 徐卫潘, 黄文强. 海拔高度对储能锂电池包强制风冷系统影响的热仿真分析及优化设计[J]. 储能科学与技术, 2023, 12(9): 2954-2961. |
[5] | 胡茜芮, 张朝阳, 洪芳军. 高温相变胶囊梯级储热系统实验研究[J]. 储能科学与技术, 2023, 12(8): 2526-2535. |
[6] | 廖丹, 胡章茂, 王唯, 田红, 宣艳妮, 陈冬林. 立方体填充料结构内换热与流动特性[J]. 储能科学与技术, 2023, 12(3): 676-684. |
[7] | 杨耿, 肖鑫, 王云峰. 基于㶲优化的梯级潜热储能装置的模拟研究[J]. 储能科学与技术, 2023, 12(12): 3770-3779. |
[8] | 闵凡奇, 吕桃林, 付诗意, 张立恒, 党国举, 晏莉琴, 解晶莹, 高云智. 锂离子电容器的热特性及热模型[J]. 储能科学与技术, 2022, 11(8): 2629-2636. |
[9] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[10] | 韦雪晴, 邓海鹏, 周宇, 王冰川. 锂离子电池组的三维电化学-热耦合仿真分析[J]. 储能科学与技术, 2022, 11(12): 3965-3977. |
[11] | 刘岩, 肖纯, 伍炜, 王雯静, 万昱. 液冷式锂离子电池组可靠性分析及优化设计[J]. 储能科学与技术, 2022, 11(11): 3566-3573. |
[12] | 吴炜, 李守成, 谢纬安. 翅片参数与PCM材料对散热器传热影响实验研究[J]. 储能科学与技术, 2021, 10(6): 2303-2311. |
[13] | 贾增昂, 凌志斌, 李旭光. 正弦脉动电流充放电下的锂离子电池发热特性[J]. 储能科学与技术, 2021, 10(6): 2260-2268. |
[14] | 令狐友强, 徐德厚, 岳秀艳, 周学志, 徐玉杰, 盛勇, 左志涛, 陈海生. 沸石-液态水吸附储热系统的释热特性[J]. 储能科学与技术, 2021, 10(3): 1103-1108. |
[15] | 王海民, 王寓非, 胡峰. 石墨-石蜡复合相变材料的圆柱型动力电池组热管理性能[J]. 储能科学与技术, 2021, 10(1): 210-217. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||