1 |
COCCA M, GIORDANO D, MELLIA M, et al. Free floating electric car sharing design: Data driven optimisation[J]. Pervasive and Mobile Computing, 2019, 55: 59-75.
|
2 |
HARVEY L D D. Cost and energy performance of advanced light duty vehicles: Implications for standards and subsidies[J]. Energy Policy, 2018, 114: 1-12.
|
3 |
GAO J B, CHEN H B, LI Y, et al. Fuel consumption and exhaust emissions of diesel vehicles in worldwide harmonized light vehicles test cycles and their sensitivities to eco-driving factors[J]. Energy Conversion and Management, 2019, 196: 605-613.
|
4 |
王仁杰, 赵兰萍, 杨志刚. 电动车用动力电池热特性对比[J]. 汽车工程学报, 2020, 10(1): 66-71.
|
|
WANG R J, ZHAO L P, YANG Z G. Comparison of thermal characteristics of power batteries for electric vehicles[J]. Chinese Journal of Automotive Engineering, 2020, 10(1): 66-71.
|
5 |
TETE P R, GUPTA M M, JOSHI S S. Numerical investigation on thermal characteristics of a liquid-cooled lithium-ion battery pack with cylindrical cell casings and a square duct[J]. Journal of Energy Storage, 2022, 48: doi: 10.1016/j.est.2022.104041.
|
6 |
XU H W, ZHANG X, XIANG G, et al. Optimization of liquid cooling and heat dissipation system of lithium-ion battery packs of automobile[J]. Case Studies in Thermal Engineering, 2021, 26: doi:10.1016/j.csite.2021.101012.
|
7 |
LIU Z Y, WANG H, YANG C, et al. Simulation study of lithium-ion battery thermal management system based on a variable flow velocity method with liquid metal[J]. Applied Thermal Engineering, 2020, 179: doi:10.1016/j.applthermaleng.2020.115578.
|
8 |
ALIPANAH M, LI X L. Numerical studies of lithium-ion battery thermal management systems using phase change materials and metal foams[J]. International Journal of Heat and Mass Transfer, 2016, 102: 1159-1168.
|
9 |
WU W X, WANG S F, WU W, et al. A critical review of battery thermal performance and liquid based battery thermal management[J]. Energy Conversion and Management, 2019, 182: 262-281.
|
10 |
CHEN K, SONG M X, WEI W, et al. Design of the structure of battery pack in parallel air-cooled battery thermal management system for cooling efficiency improvement[J]. International Journal of Heat and Mass Transfer, 2019, 132: 309-321.
|
11 |
CHEN K, CHEN Y M, LI Z Y, et al. Design of the cell spacings of battery pack in parallel air-cooled battery thermal management system[J]. International Journal of Heat and Mass Transfer, 2018, 127: 393-401.
|
12 |
刘霏霏, 袁康, 李骏, 等. 基于液冷的锂离子动力电池散热结构优化设计[J]. 湖南大学学报(自然科学版), 2021, 48(10): 48-56.
|
|
LIU F F, YUAN K, LI J, et al. Optimal design of heat dissipation structure of lithium-ion power batteries based on liquid cooling[J]. Journal of Hunan University (Natural Sciences), 2021, 48(10): 48-56.
|
13 |
AL-ZAREER M, DINCER I, ROSEN M A. A novel approach for performance improvement of liquid to vapor based battery cooling systems[J]. Energy Conversion and Management, 2019, 187: 191-204.
|
14 |
ZHENG Y R, SHI Y, HUANG Y H. Optimisation with adiabatic interlayers for liquid-dominated cooling system on fast charging battery packs[J]. Applied Thermal Engineering, 2019, 147: 636-646.
|
15 |
ZHAO C R, SOUSA A C M, JIANG F M. Minimization of thermal non-uniformity in lithium-ion battery pack cooled by channeled liquid flow[J]. International Journal of Heat and Mass Transfer, 2019, 129: 660-670.
|
16 |
LIN C Y, LIU W R. Synthesis and characterizations of graphene-based composite film for thermal dissipation[J]. Journal of Alloys and Compounds, 2019, 790: 156-162.
|
17 |
HU D M, GONG W B, DI J T, et al. Strong graphene-interlayered carbon nanotube films with high thermal conductivity[J]. Carbon, 2017, 118: 659-665.
|
18 |
XIA Q, WANG Z, REN Y, et al. Performance reliability analysis and optimization of lithium-ion battery packs based on multiphysics simulation and response surface methodology[J]. Journal of Power Sources, 2021, 490(7411): doi: 10.1016/j.jpowsour.2021.229567.
|
19 |
XIA Q, WANG Z L, REN Y, et al. A reliability design method for a lithium-ion battery pack considering the thermal disequilibrium in electric vehicles[J]. Journal of Power Sources, 2018, 386: 10-20.
|
20 |
MUHAMMAD A, SELVAKUMAR D, WU J. Numerical investigation of laminar flow and heat transfer in a liquid metal cooled mini-channel heat sink[J]. International Journal of Heat and Mass Transfer, 2020, 150: doi:10.1016/j.ijheatmasstransfer.2019.119265.
|
21 |
HUANG Y Q, LU Y J, HUANG R, et al. Study on the thermal interaction and heat dissipation of cylindrical Lithium-Ion Battery cells[J]. Energy Procedia, 2017, 142: 4029-4036.
|
22 |
LI G N, LI S P. Physics-based CFD simulation of lithium-ion battery under the FUDS driving cycle[J]. ECS Transactions, 2015, 64(33): 1-14.
|
23 |
刘岩, 张运杰, 鲍婕, 等. 基于有限元仿真的IGBT混合模块的可靠性分析[J]. 电子器件, 2021, 44(1): 7-13.
|
|
LIU Y, ZHANG Y J, BAO J, et al. Reliability analysis of IGBT hybrid module based on finite element simulation[J]. Chinese Journal of Electron Devices, 2021, 44(1): 7-13.
|
24 |
LI H L, DAI S C, MIAO J, et al. Enhanced thermal conductivity of graphene/polyimide hybrid film via a novel "molecular welding" strategy[J]. Carbon, 2018, 126: 319-327.
|