1 |
杨兆晟. 低温梯级相变蓄热器传热特性及优化研究[D]. 北京: 北京建筑大学, 2020.
|
|
YANG Z S. Study on heat transfer characteristics and optimization of low temperature cascaded phase change thermal storage device[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2020.
|
2 |
MOSAFFA A H, INFANTE FERREIRA C A, TALATI F, et al. Thermal performance of a multiple PCM thermal storage unit for free cooling[J]. Energy Conversion and Management, 2013, 67: 1-7.
|
3 |
NEKOONAM S, GHASEMPOUR R. Optimization of a solar cascaded phase change slab-plate heat exchanger thermal storage system[J]. Journal of Energy Storage, 2021, 34: doi: 10.1016/j.est.2020.102005.
|
4 |
NEKOONAM S, ROSHANDEL R. Modeling and optimization of a multiple (cascading) phase change material solar storage system[J]. Thermal Science and Engineering Progress, 2021, 23: doi: 10.1016/j.tsep.2021.100873.
|
5 |
PRASAD J S, MUTHUKUMAR P, ANANDALAKSHMI R, et al. Comparative study of phase change phenomenon in high temperature cascade latent heat energy storage system using conduction and conduction-convection models[J]. Solar Energy, 2018, 176: 627-637.
|
6 |
胡延铎, 李亚奇, 宋鸿杰, 等. 壳管式与圆柱式梯级相变蓄热装置的数值模拟与比较[J]. 四川兵工学报, 2015, 36(3): 102-106
|
|
HU Y D, LI Y Q, SONG H J, et al. Numerical simulation and comparison between shell-tube and cylinder multiple phase change materials thermal energy storage units[J]. Journal of Sichuan Ordnance, 2015, 36(3): 102-106.
|
7 |
ELSANUSI O S, NSOFOR E C. Melting of multiple PCMs with different arrangements inside a heat exchanger for energy storage[J]. Applied Thermal Engineering, 2021, 185: doi: 10.1016/j.applthermaleng.2020.116046.
|
8 |
YANG L, ZHANG X S, XU G Y. Thermal performance of a solar storage packed bed using spherical capsules filled with PCM having different melting points[J]. Energy and Buildings, 2014, 68: 639-646.
|
9 |
WU M, XU C, HE Y L. Cyclic behaviors of the molten-salt packed-bed thermal storage system filled with cascaded phase change material capsules[J]. Applied Thermal Engineering, 2016, 93: 1061-1073.
|
10 |
ALPTEKIN E, EZAN M A. A systematic assessment on a solar collector integrated packed-bed single/multi-layered latent heat thermal energy storage system[J]. Journal of Energy Storage, 2021, 37: doi: 10.1016/j.est.2021.102410.
|
11 |
HU Z P, LI A G, GAO R, et al. Enhanced heat transfer for PCM melting in the frustum-shaped unit with multiple PCMs[J]. Journal of Thermal Analysis and Calorimetry, 2015, 120(2): 1407-1416.
|
12 |
RUDRA MURTHY B V, NIDHUL K, GUMTAPURE V. Performance evaluation of novel tapered shell and tube cascaded latent heat thermal energy storage[J]. Solar Energy, 2021, 214: 377-392.
|
13 |
MAO Q J, HU X L, LI T. Study on heat storage performance of a novel vertical shell and multi-finned tube tank[J]. Renewable Energy, 2022, 193: 76-88.
|
14 |
WANG L M, WANG C, GUO Y L, et al. Novel rotary regenerative heat exchanger using cascaded phase change material capsules[J]. Applied Thermal Engineering, 2021, 188: doi: 10.1016/j.applthermaleng.2021.116619.
|
15 |
GONG Z X, MUJUMDAR A S. Enhancement of energy charge-discharge rates in composite slabs of different phase change materials[J]. International Journal of Heat and Mass Transfer, 1996, 39(4): 725-733.
|
16 |
GONG Z X, MUJUMDAR A S. Cyclic heat transfer in a novel storage unit of multiple phase change materials[J]. Applied Thermal Engineering, 1996, 16(10): 807-815.
|
17 |
FANG M, CHEN G M. Effects of different multiple PCMs on the performance of a latent thermal energy storage system[J]. Applied Thermal Engineering, 2007, 27(5/6): 994-1000.
|
18 |
SHEN Y L, MAZHAR A R, ZHANG P W, et al. Investigation of the volume impact on cascaded latent heat storage system by coupling genetic algorithm and CFD simulation[J]. Journal of Energy Storage, 2022, 48: doi: 10.1016/j.est.2022.104065.
|
19 |
胡志培, 孙志高, 孟二林. 阶梯形肋片对套管式相变蓄热器蓄热性能影响的数值研究[J]. 高校化学工程学报, 2018, 32(4): 816-822.
|
|
HU Z P, SUN Z G, MENG E L. Numerical study of stepped-fin effects on thermal performance of sleeve-tube thermal energy storage units[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(4): 816-822.
|
20 |
RAOUX S, IELMINI D, WUTTIG M, et al. Phase change materials[J]. MRS Bulletin, 2012, 37(2): 118-123.
|
21 |
HAMETER M, WALTER H. Influence of the mushy zone constant on the numerical simulation of the melting and solidification process of phase change materials[M]//Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2016: 439-444.
|