1 |
ZHUO H X, LIU Y, WANG Z Y, et al. Insight of reaction mechanism and anionic redox behavior for Li-rich and Mn-based oxide materials from local structure[J]. Nano Energy, 2021, 83: doi:10.1016/j.nanoen.2021.105812.
|
2 |
FAN E S, LI L, WANG Z P, et al. Sustainable recycling technology for Li-ion batteries and beyond: Challenges and future prospects[J]. Chemical Reviews, 2020, 120(14): 7020-7063.
|
3 |
WANG D, LIU W H, ZHANG X H, et al. Review of modified nickel-cobalt lithium aluminate cathode materials for lithium-ion batteries[J]. International Journal of Photoenergy, 2019, (8): 1-13.
|
4 |
Fang R, Ge H, Wang Z, et al. A two-dimensional heterogeneous model of lithium-ion battery and application on designing electrode with non-uniform porosity[J]. Journal of The Electrochemical Society, 2019, 167(13):doi: 10.1149/1945-7111/abb83a.
|
5 |
方儒卿, 张娜, 李哲. 3类锂离子电池多孔电极模型比较研究及电池正向设计应用[J]. 清华大学学报(自然科学版), 2021, 61(10): 1055-1065.
|
|
FANG R Q, ZHANG N, LI Z. Comparison study of three porous electrode models for the forward design of lithium-ion batteries[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(10): 1055-1065.
|
6 |
Dokko K, Nakata N, Suzuki Y, et al. High-rate lithium deintercalation from lithiated graphite single-particle electrode [J]. The Journal of Physical Chemistry C, 2010, 114(18): 8646-8650.
|
7 |
MUNAKATA H, TAKEMURA B, SAITO T, et al. Evaluation of real performance of LiFePO4 by using single particle technique[J]. Journal of Power Sources, 2012, 217: 444-448.
|
8 |
UMIROV N, YAMADA Y, MUNAKATA H, et al. Analysis of intrinsic properties of Li4Ti5O12 using single-particle technique[J]. Journal of Electroanalytical Chemistry, 2019, 855: doi:10.1016/j.jelechem.2019.113514.
|
9 |
GALLAGHER K G, TRASK S E, BAUER C, et al. Optimizing areal capacities through understanding the limitations of lithium-ion electrodes[J]. Journal of the Electrochemical Society, 2015, 163(2): doi: 10.1149/2.0321602jes.
|
10 |
SUN Y M, LIU N, CUI Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries[J]. Nature Energy, 2016, 1: 16071.
|
11 |
SHIRAZI A H N, AZADI KAKAVAND M R, RABCZUK T. Numerical study of composite electrode's particle size effect on the electrochemical and heat generation of a Li-ion battery[J]. Journal of Nanotechnology in Engineering and Medicine, 2015, 6(4): doi:10.1115/1.4032012.
|
12 |
HONG J H, WEI W F, HE G. Optimizing the particle-size distribution and tap density of LiFePO4/C composites containing excess lithium[J]. Ionics, 2019, 25(5): 2035-2039.
|
13 |
Chen L, Chen Z, Liu S, et al. Effects of particle size distribution on compacted density of lithium iron phosphate 18650 battery[J]. Journal of Electrochemical Energy Conversion and Storage, 2018, 15(4): 041011.
|
14 |
许于, 陈怡沁, 周静红, 等. LiFePO4锂离子电池的数值模拟: 正极材料颗粒粒径的影响[J]. 化工学报, 2020, 71(2): 821-830.
|
|
XU Y, CHEN Y Q, ZHOU J H, et al. Numerical simulation of lithium-ion battery with LiFePO4 as cathode material: Effect of particle size[J]. CIESC Journal, 2020, 71(2): 821-830.
|
15 |
NEWMAN J, TIEDEMANN W. Porous-electrode theory with battery applications[J]. AIChE Journal, 1975, 21(1): 25-41.
|
16 |
RÖDER F, SONNTAG S, SCHRÖDER D, et al. Simulating the impact of particle size distribution on the performance of graphite electrodes in lithium-ion batteries[J]. Energy Technology, 2016, 4(12): 1588-1597.
|
17 |
ANTARTIS D, DILLON S, CHASIOTIS I. Effect of porosity on electrochemical and mechanical properties of composite Li-ion anodes[J]. Journal of Composite Materials, 2015, 49: 1849-1862.
|
18 |
王慧艳, 陈怡沁, 周静红, 等. 锂离子电池正极涂层孔隙结构优化的数值模拟[J]. 化工学报, 2022(1): 376-383.
|
|
WANG H Y, CHEN Y Q, ZHOU J H, et al. Numerical simulation of cathode coating of lithium-ion battery for porosity optimization[J]. CIESC Journal, 2022(1): 376-383.
|
19 |
陈怡沁, 许于, 周静红, 等. 锂离子电池异构建模及内部传质机理探究:粒径分布的影响[J]. 化工学报, 2021, 72(2): 1078-1088.
|
|
CHEN Y Q, XU Y, ZHOU J H, et al. Heterogeneous modeling and internal mass transfer mechanism of lithium-ion batteries: Effect of particle size distribution[J]. CIESC Journal, 2021, 72(2): 1078-1088.
|
20 |
PATEL K K, PAULSEN J M, DESILVESTRO J. Numerical simulation of porous networks in relation to battery electrodes and separators[J]. Journal of Power Sources, 2003, 122(2): 144-152.
|
21 |
DAS P K, LI X G, LIU Z S. Effective transport coefficients in PEM fuel cell catalyst and gas diffusion layers: Beyond Bruggeman approximation[J]. Applied Energy, 2010, 87(9): 2785-2796.
|
22 |
Fan D, White R E. A mathematical model of sealed nickel-cadmium battery[J]. Journal of The Electrochemical Society, 1991, 138(1): 17-25.
|
23 |
Thomas F. Fuller; Marc Doyle; John N. Simulation and optimization of the dual lithium ion insertion cell[J]. The Journal of Electrochemical Society, 1993, 144(1): 1-10.
|
24 |
杨鹏. 锂离子电池多孔电极微观结构的分形特征[J]. 科技创新与应用, 2013(36): 20-21.
|
|
YANG P. Fractal characteristics of porous electrode microstructure of lithium-ion battery[J]. Technology Innovation and Application, 2013(36): 20-21.
|
25 |
吴伟, 蒋方明, 曾建邦. LiCoO2电池正极微结构重构及有效传输系数预测[J]. 物理化学学报, 2013, 29(11): 2361-2370.
|
|
WU W, JIANG F M, ZENG J B. Reconstruction of LiCoO2 cathode microstructure and prediction of effective transport coefficients[J]. Acta Physico-Chimica Sinica, 2013, 29(11): 2361-2370.
|
26 |
王子珩. 团聚体堆叠型多孔电极模型构建与应用[D]. 北京: 清华大学, 2017.
|
|
WANG Z H. Modeling of porous electrode using stacked-agglomerates[D]. Beijing: Tsinghua University, 2017.
|
27 |
郁伯铭, 徐鹏, 邹明清. 分形多孔介质输运物理[M]. 北京: 科学出版社, 2014.
|
|
YU B M, XU P, ZOU M Q. Transport physics in fractal porous media [M]. Beijing: Science Press, 2014.
|
28 |
YE Y H, SHI Y X, CAI N S, et al. Electro-thermal modeling and experimental validation for lithium ion battery[J]. Journal of Power Sources, 2012, 199: 227-238.
|