[1] |
LI J L, DU Z J, RUTHER R E, et al. Toward low-cost, high-energy density, and high-power density lithium-ion batteries[J]. JOM, 2017, 69(9): 1484-1496. DOI: 10.1007/s11837-017-2404-9.
|
[2] |
LUO H L, XIA Y, ZHOU Q. Mechanical damage in a lithium-ion pouch cell under indentation loads[J]. Journal of Power Sources, 2017, 357: 61-70. DOI: 10.1016/j.jpowsour.2017.04.101.
|
[3] |
官亦标, 沈进冉, 李康乐, 等. 电容型锂离子电池研究进展[J]. 储能科学与技术, 2019, 8(5): 799-806. DOI: 10.12028/j.issn.2095-4239. 2019.0150.
|
|
GUAN Y B, SHEN J R, LI K L, et al. Research progress on capacitive lithium-ion battery[J]. Energy Storage Science and Technology, 2019, 8(5): 799-806. DOI: 10.12028/j.issn.2095-4239.2019.0150.
|
[4] |
HUANG P F, LIU S T, MA J, et al. Comprehensive investigation on the durability and safety performances of lithium-ion batteries under slight mechanical deformation[J]. Journal of Energy Storage, 2023, 66: 107450. DOI: 10.1016/j.est.2023.107450.
|
[5] |
SHEN R C, NIU S J, ZHU G B, et al. Mechanical behavior analysis of high power commercial lithium-ion batteries[J]. Chinese Journal of Chemical Engineering, 2023, 58: 315-322. DOI: 10.1016/j.cjche.2022.10.017.
|
[6] |
胡言庆, 杨斌, 王宇作, 等. 不同工况下功率型锂离子电池的热特性与仿真研究[J]. 电工电能新技术, 2023, 42(1): 21-28. DOI: 10. 12067/ATEEE2204052.
|
|
HU Y Q, YANG B, WANG Y Z, et al. Thermal characteristics and simulation of power lithium-ion batteries under different operating conditions[J]. Advanced Technology of Electrical Engineering and Energy, 2023, 42(1): 21-28. DOI: 10.12067/ATEEE2204052.
|
[7] |
胡林, 田庆韬, 黄晶, 等. 电动汽车锂离子电池-超级电容混合储能系统能量分配与参数匹配研究综述[J]. 机械工程学报, 2022, 58(16): 224-237. DOI: 10.3901/JME.2022.16.224.
|
|
HU L, TIAN Q T, HUANG J, et al. Review on energy distribution and parameter matching of lithium-ion battery-super capacitor hybrid energy storage system for electric vehicles[J]. Journal of Mechanical Engineering, 2022, 58(16): 224-237. DOI: 10.3901/JME.2022.16.224.
|
[8] |
尹丽琼, 韦安定, 韦财金. 大数据下电动汽车动力电池故障诊断技术现状与发展趋势[J]. 时代汽车, 2023(13): 154-156.
|
|
YIN L Q, WEI A D, WEI C J. Status quo and development trend of electric vehicle power battery fault diagnosis technology under big data[J]. Auto Time, 2023(13): 154-156.
|
[9] |
李梦. 圆柱形动力锂离子电池在机械滥用下的安全及防护研究[D]. 太原: 太原理工大学, 2021. DOI: 10.27352/d.cnki.gylgu. 2021. 001046.
|
[10] |
杜志明, 陈佳炜. 锂离子电池热失控危险性研究进展[J]. 安全与环境学报, 2021, 21(4): 1523-1532. DOI: 10.13637/j.issn.1009-6094. 2020.0201.
|
|
DU Z M, CHEN J W. Research progress on the risks of the thermal runaway in lithium-ion batteries[J]. Journal of Safety and Environment, 2021, 21(4): 1523-1532. DOI: 10.13637/j.issn.1009-6094.2020.0201.
|
[11] |
赵思琦. 压缩/弯曲工况下温度对锂离子电池机械完整性影响研究[D]. 长沙: 湖南大学, 2019. DOI: 10.27135/d.cnki.ghudu. 2019. 001871.
|
[12] |
刘南南, 张新春, 董思捷, 等. 不同挤压载荷下方形锂离子电池的力学响应特性研究[J]. 应用力学学报, 2024, 41(4): 797-803.
|
|
LIU N N, ZHANG X C, DONG S J, et al. Mechanical response of square lithium-ion battery under different compression loadings[J]. Chinese Journal of Applied Mechanics, 2024, 41(4): 797-803.
|
[13] |
李杰, 张云龙, 袁博兴, 等. 圆柱形锂电池在局部压痕下的安全性实验研究[J]. 高压物理学报, 2024, 38(2): 163-174.
|
|
LI J, ZHANG Y L, YUAN B X, et al. Experimental study on the safety performance of cylindrical lithium-ion batteries under local indentation[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 163-174.
|
[14] |
张宇, 周玉凤, 陈晓平. 方形锂电池压痕测试有限元分析[J]. 软件导刊, 2020, 19(7): 76-80.
|
|
ZHANG Y, ZHOU Y F, CHEN X P. Finite element analysis of square lithium-ion battery indentation test[J]. Software Guide, 2020, 19(7): 76-80.
|
[15] |
LIN H C, CHEN K C, CHEN C H. Electrochemical change induced by spherical indentation in lithium-ion batteries[J]. Batteries, 2022, 8(12): 268. DOI: 10.3390/batteries8120268.
|
[16] |
BUCKWELL M, KIRCHNER-BURLES C, OWEN R E, et al. Failure and hazard characterisation of high-power lithium-ion cells via coupling accelerating rate calorimetry with in-line mass spectrometry, statistical and post-mortem analyses[J]. Journal of Energy Storage, 2023, 65: 107069. DOI: 10.1016/j.est. 2023. 107069.
|
[17] |
FLEISCHHAMMER M, WALDMANN T, BISLE G, et al. Interaction of cyclic ageing at high-rate and low temperatures and safety in lithium-ion batteries[J]. Journal of Power Sources, 2015, 274: 432-439. DOI: 10.1016/j.jpowsour.2014.08.135.
|
[18] |
YANG J, WANG Y Z, HU Y Q, et al. Regulating charge heterogeneity of lithium-ion battery via tab design toward maximizing extreme fast-charging performance[J]. Progress in Natural Science: Materials International, 2023, 33(5): 660-667. DOI: 10.1016/j.pnsc.2023.11.011.
|
[19] |
刘登锋, 杨军, 胡言庆, 等. 电动汽车用功率型锂离子电池的针刺安全特性研究[J]. 汽车技术, 2023(8): 14-21. DOI: 10.19620/j.cnki. 1000-3703.20220448.
|
|
LIU D F, YANG J, HU Y Q, et al. Study on nail penetration safety characteristics of high-power lithium-ion batteries for electric vehicles[J]. Automobile Technology, 2023(8): 14-21. DOI: 10.19620/j.cnki.1000-3703.20220448.
|
[20] |
DUH Y S, SUN Y J, LIN X, et al. Characterization on thermal runaway of commercial 18650 lithium-ion batteries used in electric vehicles: A review[J]. Journal of Energy Storage, 2021, 41: 102888. DOI: 10.1016/j.est.2021.102888.
|
[21] |
JU Z N, ZHAO Q, CHAO D L, et al. Energetic aqueous batteries[J]. Advanced Energy Materials, 2022, 12(27): 2201074. DOI: 10.1002/aenm.202201074.
|
[22] |
苟思涛. 方形锂离子电池在机械滥用下的安全性研究[D]. 西安: 长安大学, 2022. DOI: 10.26976/d.cnki.gchau.2022.001267.
|
|
GOU S T. Study on the safety of prismatic lithium-ion battery under mechanical abuse[D]. Xi'an: Changan University, 2022. DOI: 10.26976/d.cnki.gchau.2022.001267.
|
[23] |
KALNAUS S, WANG H, WATKINS T R, et al. Effect of packaging and cooling plates on mechanical response and failure characteristics of automotive Li-ion battery modules[J]. Journal of Power Sources, 2018, 403: 20-26. DOI: 10.1016/j.jpowsour. 2018. 09.071.
|
[24] |
汤元会, 袁博兴, 李杰, 等. 圆柱形锂离子电池在针刺条件下的安全性研究[J]. 储能科学与技术, 2024, 13(4): 1326-1334. DOI: 10. 19799/j.cnki.2095-4239.2023.0654.
|
|
TANG Y H, YUAN B X, LI J, et al. Study on the safety of cylindrical lithium-ion batteries under nail penetration conditions[J]. Energy Storage Science and Technology, 2024, 13(4): 1326-1334. DOI: 10.19799/j.cnki.2095-4239.2023.0654.
|
[25] |
刘承鑫, 李梓衡, 陈泽宇, 等. 储能锂离子电池高温诱发热失控特性研究[J]. 储能科学与技术, 2024, 13(7): 2425-2431. DOI: 10.19799/j.cnki.2095-4239.2024.0121.
|
|
LIU C X, LI Z H, CHEN Z Y, et al. Characterization study on overheat-induced thermal runaway for lithium-ion battery in energy storage[J]. Energy Storage Science and Technology, 2024, 13(7): 2425-2431. DOI: 10.19799/j.cnki.2095-4239. 2024. 0121.
|
[26] |
MADDIPATLA S, KONG L X, PECHT M. Safety analysis of lithium-ion cylindrical batteries using design and process failure mode and effect analysis[J]. Batteries, 2024, 10(3): 76. DOI: 10. 3390/batteries10030076.
|
[27] |
ZHANG L P, LI X L, YANG M R, et al. High-safety separators for lithium-ion batteries and sodium-ion batteries: Advances and perspective[J]. Energy Storage Materials, 2021, 41: 522-545. DOI: 10.1016/j.ensm.2021.06.033.
|
[28] |
RANA S, KUMAR R, BHARJ R S. Current trends, challenges, and prospects in material advances for improving the overall safety of lithium-ion battery pack[J]. Chemical Engineering Journal, 2023, 463: 142336. DOI: 10.1016/j.cej.2023.142336.
|
[29] |
VOYIADJIS G Z, AKBARI E, ŁUCZAK B, et al. Towards determining an engineering stress-strain curve and damage of the cylindrical lithium-ion battery using the cylindrical indentation test[J]. Batteries, 2023, 9(4): 233. DOI: 10.3390/batteries9040233.
|
[30] |
XU J Y, MA J, ZHAO X, et al. Detection technology for battery safety in electric vehicles: A review[J]. Energies, 2020, 13(18): 4636. DOI: 10.3390/en13184636.
|