[1] |
LI Y, WEI Y, ZHU F, et al. The path enabling storage of renewable energy toward carbon neutralization in China [J]. eTransportation, 2023, 16, 100226. DOI: 10.1016/j.etran.2023.100226.
|
[2] |
袁帅, 崔煜杰, 程东浩, 等. 2017年~2024年全球电化学储能电站火灾爆炸事故统计分析 [J].储能科学与技术, 2025.
|
|
YUAN S, CUI Y, CHENG D, et al. Statistics analysis of fire and explosion accidents in electrochemical energy storage stations from 2017 to 2024 in the world [J]. Energy Storage Science and Technology, 2025.
|
[3] |
张少刚, 张润箫, 聂细亮, 等. 储能电站预制舱磷酸铁锂电池热失控燃爆危害仿真研究 [J]. 储能科学与技术, 2025.
|
|
ZHANG S, ZHANG R, NIE X, et al. Simulation study on thermal runaway explosion hazards of lithium iron phosphate batteries in prefabricated cabins of energy storage power stations [J]. Energy Storage Science and Technology, 2025.
|
[4] |
FENG X, REN D, HE X, et al. Mitigating thermal runaway of lithium-ion batteries [J]. Joule, 2020, 4, 743–770. DOI: 10.1016/j.joule.2020.02.010.
|
[5] |
WANG S, SONG L, LI C, et al. Experimental study of gas production and flame behavior induced by the thermal runaway of 280 Ah lithium iron phosphate battery [J]. Energy Storage, 2023, 74, 109368. DOI: 10.1016/j.est.2023.109368.
|
[6] |
XU C, FAN Z, ZHANG M, et al. A comparative study of the venting gas of lithium-ion batteries during thermal runaway triggered by various methods [J]. Cell Rep. Phys. Sci., 2023, 4, 101705. DOI: 10.1016/j.xcrp.2023.101705.
|
[7] |
WANG H, XU H, ZHANG Z, et al. Fire and explosion characteristics of vent gas from lithium-ion batteries after thermal runaway: A comparative study [J]. eTransportation, 2022, 13, 100190. DOI: 10.1016/j.etran.2022.100190.
|
[8] |
WANG Q, WANG H, XU C, et al. Multidimensional fire propagation of lithium-ion phosphate batteries for energy storage [J]. eTransportation, 2024, 20, 100328. DOI: 10.1016/j.etran.2024.100328.
|
[9] |
XU W, WU X, LI Y, et al. A comprehensive review of DC arc faults and their mechanisms, detection, early warning strategies, and protection in battery systems [J]. Renewable and Sustainable Energy Reviews. 2023, 186, 113674. DOI: 10.1016/j.rser.2023.113674.
|
[10] |
黄怀宇, 黄思林, 赵荣超, 等. 磷酸铁锂电池铝塑膜壳体绝缘失效触发热失控特性实验研究[J]. 储能科学与技术, 2025, 14(02):613-623.
|
|
HUANG H, HUANG S, ZHAO R, et al. Experimental study on thermal runaway characteristics triggered by insulation failure of aluminum-plastic film shell of lithium iron phosphate battery[J]. Energy Storage Science and Technology, 2025, 14(02):613-623.
|
[11] |
牛腾腾, 黄人杰, 渠展展, 等. 1500 V锂离子电池簇电场分布仿真及绝缘风险分析[J]. 中国电机工程学报, 2024, 44(01):377-385.
|
|
NIU T, HUANG R, QU Z, et al. Electric field distribution simulation and insulation risk analysis of1 500 V lithium-ion battery cluster [J]. Proceedings of the CSEE, 2024, 44(01):377-385.
|
[12] |
CHEN H, LIU Y, QU Z, 等. Experimental research on thermal runaway characterization and mechanism induced by the shell insulation failure for LiFePO4 Lithium-ion battery[J]. Journal of Energy Storage, 2024, 84, 110735. DOI: 10.1016/j.est.2024.110735.
|
[13] |
LI W, XUE Y, FENG X, et al. Enhancing understanding of particle emissions from lithium-ion traction batteries during thermal runaway: An overview and challenges[J]. eTransportation, 2024, 22, 100354. DOI: 10.1016/j.etran.2024.100354.
|
[14] |
WANG H, WANG Q, JIN C, et al. Detailed characterization of particle emissions due to thermal failure of batteries with different cathodes[J]. J Hazard Mater, 2023, 458,131646. DOI: 10.1016/j.jhazmat.2023.131646.
|
[15] |
ZHANG Y, WANG H, LI W, et al. Size distribution and elemental composition of vent particles from abused prismatic Ni-rich automotive lithium-ion batteries[J]. J Energy Storage, 2019, 26, 100991. DOI: 10.1016/j.jhazmat.2023.131646.
|
[16] |
ESSL C, GOLUBKOV A, GASSER E, et al. Comprehensive hazard analysis of failing automotive lithium-ion batteries in overtemperature experiments. Batteries, 2020, 6:30. DOI: 10.3390/batteries6020030.
|
[17] |
WANG Y, WANG H, ZHANG Y, et al. Thermal oxidation characteristics for smoke particles from an abused prismatic Li(Ni0.6Co0.2Mn0.2)O2 battery[J]. J Energy Storage, 2021, 39, 102639. DOI: 10.1016/j.est.2021.102639.
|
[18] |
WANG G, KONG D, PING P, et al. Revealing particle venting of lithium-ion batteries during thermal runaway: a multi-scale model toward multiphase process[J]. eTransportation, 2023, 16, 100237. DOI: 10.1016/j.etran.2023.100237.
|
[19] |
LI C, WANG H, LIY, et al. Venting particle-induced arc of lithium-ion batteries during the thermal runaway[J]. eTransportation, 2024, 22, 100350. DOI: 10.1016/j.etran.2024.100350.
|
[20] |
ZHANG Y, PING P, REN X, et al. Characteristics and generation mechanism of ejecta-induced arc for lithium-ion battery during thermal runaway[J]. eTransportation, 2025, 24, 100429. DOI: 10.1016/j.etran.2025.100429.
|
[21] |
SHEN H, WANG H, LI M, et al. Thermal runaway characteristics and gas composition analysis of lithium-ion batteries with different LFP and NCM cathode materials under inert atmosphere[J]. Electronics, 2023, 12, 1603. DOI: 10.3390/electronics12071603.
|
[22] |
WASSILIADIS N, STEINSTRATER M, SCHREIBER M, et al. Quantifying the state of the art of electric powertrains in battery electric vehicles: Range, efficiency, and lifetime from component to system level of the Volkswagen ID.3[J]. eTransportation, 2022, 12, 100167. DOI: 10.1016/j.etran.2022.100167.
|
[23] |
AHN J; LEE J; RYOO H, et al. PCA-based arc detection algorithm for DC series arc detection in PV system[J]. In 2021 24th international conference on electrical machines and systems (ICEMS). 2021. DOI: 10.23919/ICEMS52562.2021.9634256.
|
[24] |
XU W, ZHOU K, LI Y, et al. Study on the evolution laws and induced failure of series arcs in cylindrical lithium-ion batteries[J]. Applied Energy, 2025, 377, 124562. DOI: 10.1016/j.apenergy.2025.124562.
|
[25] |
XU W, ZHOU K, WANG H, et al. Experimental and modeling study of arc fault induced thermal runaway in prismatic lithium-ion batteries[J]. Batteries 2024, 10, 269. DOI: 10.3390/batteries10080269.
|
[26] |
QI. P, ZHANG J, DA J, et al. Combustion characteristics of lithium–iron–phosphate batteries with different combustion states[J]. eTransportation, 2022, 11, 100148. DOI: 10.1016/j.etran.2022.100148.
|
[27] |
MAO B, LIU C, YANG K, et al. Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode[J]. Renew Sustain Energy Rev, 2021, 139, 110717. DOI: 10.1016/j.rser.2021.110717.
|
[28] |
GONG Z, SUN J, WANG H, et al. Influence of different causes on thermal runaway characteristic of LiFePO4 battery[J]. J Energy Storage, 2024, 93, 112411. DOI: 10.1016/j.est.2024.112411.
|
[29] |
XU W, ZHOU K, WWANG H, et al. Series arc-induced internal short circuit leading to thermal runaway in lithium-ion battery[J]. Energy, 2024, 308, 132999. DOI: 10.1016/j.energy.2024.132999.
|
[30] |
XU W, LU L, ZHOU K, et al. Experimental and model analysis of the thermoelectric characteristics of serial arc in prismatic lithium-ion batteries[J]. IET Energy Systems Integration, DOI: 10.1049/esi2.12162. DOI: 10.1049/esi2.12162.
|
[31] |
和志文. 电击穿电弧形成过程及模型研究[D]. 浙江, 2021.
|
|
HE Z. Study on the forming process and model of electric breakdown arc [D]. Zhejiang, 2021.
|
[32] |
RAGALLER K, EGLI W, BRAND K P. Dielectric recovery of an axially blown SF6-arc after current zero: part ll-theoretical investigations[J]. lEEE Transactions on Plasma Science, 2007, 10(3):154-162. DOI: 10.1109/TPS.1982.4316743.
|
[33] |
NIEMEYER L. Evaporation dominated high current arcs in narrow channels[J]. lEEE Trans. power App. syst, 1978, PAS-97(3):950-958. DOI: 10.1109/TPAS.1978.354603.
|
[34] |
BEILIS I I, Keidar M, Boxman R L, et al. Theoretical study of plasma expansion in a magnetic field in a disk anode vacuum arc[J]. Journal of Applied Physics, 1998, 83(2): 709-717.
|
[35] |
MERCK W, ZATELEPIN V. The gas dynamics of current-limiting devices during immobility time[J]. Plasma Science EEE Transactions, 1997, 25(5):947-953. DOI: 10.1109/27.649583.
|
[36] |
ENAMI Y, SAKATA M. Simulation of arc in molded-case circuit breaker with metal vapor and moving electrode[J]. 2013 2nd International Conference on Electric Power Equipment - Switching Technology, Matsue, 2013, 6804390. DOI: 10.1109/EPES.2013.6804390.
|
[37] |
DONG C, GAO B, LI Y, et al. Experimental and model analysis of the thermal and electrical phenomenon of arc faults on the electrode pole of lithium-ion batteries[J]. Batteries, 2024, 10, 127. DOI: 10.3390/batteries100401271.
|