储能科学与技术

• XXXX •    

储能锂离子电池系统热失控诱发电弧研究进展

徐成善1,2(), 孙烨3, 杨智凯4, 赵明强5,6, 李亚伦7, 冯旭宁1,2, 王贺武1,2, 卢兰光1,2(), 欧阳明高1,2   

  1. 1.清华大学车辆与运载学院,北京 100084
    2.清华大学智能绿色车辆与交通全国重点实验室,北京 100084
    3.西安科技大学安全科学与工程学院,陕西 西安 710054
    4.中国农业大学工学院,北京,100083
    5.四川赛科检测技术有限公司,四川 宜宾 644000
    6.国家市场监督管理总局重点实验室(储能与动力电池安全),四川 宜宾 644000
    7.北京航空航天大学交通科学与工程学院,北京 100191
  • 收稿日期:2025-06-11 修回日期:2025-07-01
  • 通讯作者: 卢兰光 E-mail:xcs_pcg@mail.tsinghua.edu.cn;lulg@tsinghua.edu.cn
  • 作者简介:徐成善(1993—),男,博士,助理研究员,动力及储能电池系统失效机理、建模和安全设计,E-mail:xcs_pcg@mail.tsinghua.edu.cn
  • 基金资助:
    国家重点研发计划“储能与智能电网技术”重点专项(2022YFB2404800);国家重点研发计划战略性科技创新合作项目“新能源汽车高比能电池全生命周期安全性联合研究”(2022YFE0207900);国家自然科学基金(52422609);清华大学智能绿色车辆与交通全国重点实验室自主研究课题(ZZ-PY-20250109)

Research Progress on Arc Induced by Thermal Runaway in Energy Storage Lithium-ion Battery Systems

Chengshan XU1,2(), Ye SUN3, Zhikai YANG4, Mingqiang ZHAO5,6, Yalun LI7, Xuning FENG1,2, Hewu WANG1,2, Languang LU1,2(), Minggao OUYANG1,2   

  1. 1.School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
    2.State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing 100084, China
    3.School of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China
    4.College of Engineering, China Agricultural University, Beijing, 100083, China
    5.Sichuan SEVC Testing Technology Co. Ltd, Yibin, 644000, Sichuan, China
    6.Key Laboratory of Energy Storage and Power Battery Safety, State Administration for Market Regulation, Yibin, 644000, Sichuan, China
    7.School of Transportation Science and Engineering, Beihang University, 100191, China
  • Received:2025-06-11 Revised:2025-07-01
  • Contact: Languang LU E-mail:xcs_pcg@mail.tsinghua.edu.cn;lulg@tsinghua.edu.cn

摘要:

全球能源转型加速推进背景下,大规模储能电站的安全运行面临严峻挑战,其中电池热失控诱发的电弧故障因其高温、高能量特性成为加剧火灾爆炸风险的核心致灾因素。本文回顾了近年来在储能电池中诱发电弧以及电弧对电池热失控影响的相关文章,全面综述了储能电池系统中电池热失控特性与不同类型电弧诱发之间的联系,系统总结了储能系统中电弧形成的多路径耦合机理:高温或机械破坏引发的绝缘失效在安全间距低于临界击穿距离时,可能导致通电部件直接接触或气体介质击穿;热失控喷发的高温气体、颗粒物、电解液可显著降低绝缘强度,改变局部介质环境;长期运行中电连接点松动或化学腐蚀引发的结构劣化会导致绝缘破损并演化为持续电弧。但目前在电弧诱发机制研究中电弧的触发方式以及电弧对电池性能的影响,存在触发方式静态化、触发位置特定化的局限性。在电池电弧仿真领域,基于磁流体动力学的电弧多物理场模型虽能表征电弧稳定燃烧后的温度场、磁场与流场的耦合特征,但仍难以准确模拟热失控过程中电弧触发的动态行为。亟需发展融合“热-电-力-化学”多场耦合的智能仿真模型,为储能系统电弧灾害防控提供理论支撑与技术路径。本文旨在更好地理解储能电池系统中电弧发生的特征和提高系统电气安全的思路,为研究人员在储能系统的安全性设计上提供新的方向,促进储能系统的高安全发展。

关键词: 储能系统, 锂离子电池, 热失控, 电弧诱发

Abstract:

Amidst accelerated global energy transition, the safe operation of large-scale energy storage stations faces severe challenges. Battery thermal runaway induced arc faults—characterized by ultrahigh temperatures and energy density—have emerged as a critical factor exacerbating fire and explosion risks. This review examines recent advances in arc initiation mechanisms within energy storage batteries and the impact of arcing on TR propagation. The relationship between the thermal runaway characteristics of battery energy storage systems and different types of arc ignition has been summarized for the first time. Three multipath coupling mechanisms driving arc formation in lithium-based energy storage systems are methodically synthesized. Insulation failure caused by thermal/mechanical stress reduces safe clearance below the critical breakdown distance, triggering direct contact of energized components or gaseous dielectric breakdown. TR-ejected particulates and electrolyte vapors degrade insulation strength by 50–80% compared to air, altering local dielectric environments. Structural degradation from prolonged operation evolves into persistent arcing through insulation deterioration. Current research exhibits two limitations: static triggering methods overlook dynamic TR-arc interactions, and position-specific models fail to generalize arcing behavior across heterogeneous battery configurations. While magnetohydrodynamic (MHD) simulations characterize post-ignition plasma-field coupling (temperature/magnetic/flow fields), it inadequately resolves dynamic arc initiation during TR cascades. An integrated "thermal-electrical-mechanical-chemical" multi physical field model must be developed to simulate transient arcing behavior under TR conditions. This will establish a theoretical foundation for arc hazard mitigation in Energy storage system. By elucidating arc signatures and electrical-safety enhancement strategies, this work provides new directions for safety-centric design of energy storage systems, ultimately advancing high-reliability energy storage systems.

Key words: Energy storage system, lithium-ion battery, thermal runaway, electric arc occurrence

中图分类号: