1 |
李文俊, 徐航宇, 张臻, 等. 高能量密度锂电池开发策略 [J]. 储能科学与技术, 2020, 9: 449-78.
|
2 |
ARMAND M, AXMANN P, BRESSER D, et al. Lithium-ion batteries -Current state of the art and anticipated developments [J]. Journal of Power Sources, 2020, 479: 228708.
|
3 |
MIAO Y, LIU L, ZHANG Y, et al. An overview of global power lithium-ion batteries and associated critical metal recycling [J]. Journal of Hazardous Materials, 2022, 425: 127900.
|
4 |
杜进桥, 田杰, 李艳, 等. 锂离子电池石墨负极失效及其先进表征方法 [J]. 储能科学与技术, 2024, 13(10): 3467.
|
5 |
LI J, WANG T, WANG Y, et al. Solid-liquid-solid growth of doped silicon nanowires for high-performance lithium-ion battery anode [J]. Nano Energy, 2025, 133: 110455.
|
6 |
尹坚, 董季玲, 丁皓, 等. 锂离子电池过渡金属氧化物负极材料研究进展 [J]. 储能科学与技术, 2021, 10(3): 995.
|
7 |
LI X, WANG J H, YANG L, et al. Element screening engineering for high-entropy alloy anodes: Achieving fast and robust Li-storage with optimal working potential [J]. Advanced Materials, 2024, 36(48): 2409278.
|
8 |
PONNURU H, MARRIAM I, RAMBUKWELLA I, et al. Recent advances in liquid metals for rechargeable batteries [J]. Advanced Functional Materials, 2023: 2309706.
|
9 |
陈玉, 夏鑫. 可充电电池的镓基液态金属负极材料研究进展 [J]. 电源技术, 2021, 45: 132-5.
|
10 |
张剑峰, 陈玉, 刘航, 等. 碳基GaSn合金负极材料的制备及其电化学性能 [J]. 化工新型材料, 2023, 52: 90-5.
|
11 |
张春小, 崔丹丹, 杜轶, 等. 镓基液态金属的结构与物性 [J]. 自然杂志, 2023, 45(5): 340.
|
12 |
SONG M, WANG Y, YU B, et al. A high-performance room-temperature magnesium ion battery with self-healing liquid alloy anode mediated with a bifunctional intermetallic compound [J]. Chemical Engineering Journal, 2022, 450: 138176.
|
13 |
GU J, TAO Y, CHEN H, et al. Stress-release functional liquid metal-MXene layers toward dendrite-free zinc metal anodes [J]. Advanced Energy Materials, 2022, 12(16): 2200115.
|
14 |
FU H, LIU G, XIONG L, et al. A shape-variable, low-temperature liquid metal-conductive polymer aqueous secondary battery [J]. Advanced Functional Materials, 2021, 31(50): 2107062.
|
15 |
WEI C, TAN L, TAO Y, et al. Interfacial passivation by room-temperature liquid metal enabling stable 5 V-class lithium-metal batteries in commercial carbonate-based electrolyte [J]. Energy Storage Materials, 2021, 34: 12-21.
|
16 |
尹富强, 赵玉辰, 李赵春. 镓基液态金属应用的研究进展 [J]. 现代化工, 2022, 42(5): 24.
|
17 |
WEI C, FEI H, TIAN Y, et al. Room-temperature liquid metal confined in MXene paper as a flexible, freestanding, and binder-free anode for next-generation lithium-ion batteries [J]. Small, 2019, 15(46): e1903214.
|
18 |
ZHANG H, CHEN P, XIA H, et al. An integrated self-healing anode assembled via dynamic encapsulation of liquid metal with a 3D Ti3C2Tx network for enhanced lithium storage [J]. Energy & Environmental Science, 2022, 15(12): 5240-50.
|
19 |
HUANG C, GUO B, WANG X, et al. Alkali-ion batteries by carbon encapsulation of liquid metal anode [J]. Advanced Materials, 2023, 36(4): 2309732.
|
20 |
LIN X, CHEN A, YANG C, et al. A room-temperature self-healing liquid metal-infilled microcapsule driven by coaxial flow focusing for high-performance lithium-ion battery anode [J]. Small, 2023: 2307071.
|
21 |
WANG K, HU J, CHEN T, et al. CuGa2 transition phase anchored liquid GaSn achieves high-performance liquid metal battery cathode [J]. Journal of Energy Storage, 2024, 89: 111879.
|
22 |
YANG J, ZHOU W, HU J, et al. Universal renaissance strategy of metal fluoride in secondary ion batteries enabled by liquid metal gallium [J]. Advanced Materials, 2023, 35(28): 2301442.
|
23 |
LIN X, CHEN A, YANG C, et al. A room-temperature self-healing liquid metal-infilled microcapsule driven by coaxial flow focusing for high-performance lithium-ion battery anode [J]. Small, 2023, 20(16): 2307071.
|
24 |
WANG Q, ZHU M, CHEN G, et al. High-performance microsized Si anodes for lithium-ion batteries: Insights into the polymer configuration conversion mechanism [J]. Advanced Materials, 2022, 34(16): 2109658.
|
25 |
HAN B, ZOU Y, KE R, et al. Stable lithium metal anodes with a GaOx artificial solid electrolyte interphase in damp air [J]. ACS Applied Materials & Interfaces, 2021, 13(18): 21467-73.
|
26 |
HAN B, XU D, CHI S S, et al. 500 Wh kg-1 class Li metal battery enabled by a self-organized core-shell composite anode [J]. Advanced Materials, 2020, 32(42): 2004793.
|
27 |
NI J, ZHU X, YUAN Y, et al. Rooting binder-free tin nanoarrays into copper substrate via tin-copper alloying for robust energy storage [J]. Nature Communications, 2020, 11(1): 1212.
|