储能科学与技术

• XXXX •    

不同形态液态金属电极的储锂机制研究

陈文艳1(), 贺瑞璘1, 常建1,2(), 邓永红1()   

  1. 1.南方科技大学材料科学与工程系,广东 深圳 518055
    2.大湾区大学(筹)物质科学学院,广东 东莞 523000
  • 收稿日期:2025-02-22 修回日期:2025-03-17
  • 通讯作者: 常建,邓永红 E-mail:12149001@mail.sustech.edu.cn;changj@sustech.edu.cn;yhdeng08@163.com
  • 作者简介:陈文艳(1996),女,博士研究生(在读),研究方向:锂离子电池负极材料,E-mail: 12149001@mail.sustech.edu.cn
  • 基金资助:
    国家自然科学基金(22078144);国家自然科学基金(国家自然科学基金(22371116);广东省基础与应用基础研究基金(2022B1515120013);广东省电驱动力能源材料重点实验室(2018B030322001);深圳市科技计划资助(JCYJ20220818100218040

Investigation of Lithium Storage Mechanisms in Liquid Metal Electrodes with Different Morphologies

Wenyan CHEN1(), Ruilin HE1, Jian CHANG1,2(), Yonghong DENG1()   

  1. 1.Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055
    2.School of Physical Sciences, Greater Bay University, Dongguan, Guangdong, 523000
  • Received:2025-02-22 Revised:2025-03-17
  • Contact: Jian CHANG, Yonghong DENG E-mail:12149001@mail.sustech.edu.cn;changj@sustech.edu.cn;yhdeng08@163.com

摘要:

利用液态金属的优良流动性和自愈特性,分别采用探针超声法和刮涂法,制备了液态金属纳米粒子(LMNP)和液态金属膜(LMF)两种新型电极。借助聚焦离子束技术(FIB)、扫描电子显微技术(SEM)、纳米压痕和电化学测试等手段,对比分析了两种电极的微观结构、力学性能和电化学性能。结果表明,LMNP电极的液态金属纳米颗粒均匀分散在电极基体中,颗粒之间结合紧密;LMF电极中的液态金属则成膜分布在基底,膜层光滑,但与集流体之间出现裂缝。LMNP电极的倍率性能和循环稳定性明显优于LMF电极,在2.0 A g-1电流密度下循环300次,可逆比容量仍有399.3 mAh g-1,容量保持率为86.9%。两种电极在循环过程中均经历了粒径减小和颗粒自愈焊接现象,为电荷转移提供了更多导电通道。此外,两种电极在循环过程中均经历了从软到硬的结构转变,但LMNP电极的转变速度更快,从而更快达到稳定,展现出更优异的电化学性能。本研究为液态金属基电极的应用提供了实验依据,为高性能锂离子电池负极材料的研发提供了新的思路。

关键词: 锂离子电池, 液态金属, 负极, 电化学性能, 自愈合效应

Abstract:

Leveraging the excellent fluidity and self-healing properties of liquid metal, two novel types of electrodes, liquid metal nanoparticles (LMNP) and liquid metal film (LMF), were fabricated using probe ultrasonication and doctor-blading methods, respectively. The microstructures, mechanical properties, and electrochemical performances of these two electrodes were comparatively analyzed using focused ion beam (FIB), scanning electron microscopy (SEM), nanoindentation, and electrochemical testing techniques. The results showed that the liquid metal nanoparticles in the LMNP electrode were uniformly dispersed within the electrode matrix, with tight bonding between the particles. In contrast, the liquid metal in the LMF electrode formed a smooth film on the substrate, but cracks appeared between the film and the current collector. The LMNP electrode exhibited significantly better rate performance and cycling stability than the LMF electrode. After 300 cycles at a current density of 2.0 A g-1, the reversible specific capacity of the LMNP electrode remained at 399.3 mAh g-1, with a capacity retention rate of 86.9%.Both electrodes experienced a reduction in particle size and self-healing welding during the cycling process, which provided more conductive pathways for charge transfer. Additionally, both electrodes underwent a structural transition from soft to hard during cycling, but the LMNP electrode transitioned more rapidly, achieving stability sooner and thus demonstrating superior electrochemical performance. This study provides experimental evidence for the application of liquid metal-based electrodes and offers new insights for the development of high-performance lithium-ion battery anode materials.

Key words: Lithium-ion battery, Liquid metal, anode, electrochemical performance, self-healing effect