[1] |
XIE N, ZHANG Y, LIU X J, et al. Thermal performance and structural optimization of a hybrid thermal management system based on MHPA/PCM/liquid cooling for lithium-ion battery[J]. Applied Thermal Engineering, 2023, 235: 121341. DOI: 10.1016/j.applthermaleng.2023.121341.
|
[2] |
GUO Z J, XU Q D, WANG Y, et al. Battery thermal management system with heat pipe considering battery aging effect[J]. Energy, 2023, 263: 126116. DOI: 10.1016/j.energy.2022.126116.
|
[3] |
ZHANG G X, WEI X Z, HAN G S, et al. Lithium plating on the anode for lithium-ion batteries during long-term low temperature cycling[J]. Journal of Power Sources, 2021, 484: 229312. DOI: 10.1016/j.jpowsour.2020.229312.
|
[4] |
WANG C, XU J, WANG M W, et al. Experimental investigation on reciprocating air-cooling strategy of battery thermal management system[J]. Journal of Energy Storage, 2023, 58: 106406. DOI: 10.1016/j.est.2022.106406.
|
[5] |
YANG W, ZHOU F, ZHOU H B, et al. Thermal performance of axial air cooling system with bionic surface structure for cylindrical lithium-ion battery module[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120307. DOI: 10.1016/j.ijheatmasstransfer.2020.120307.
|
[6] |
YATES M, AKRAMI M, JAVADI A A. Analysing the performance of liquid cooling designs in cylindrical lithium-ion batteries[J]. Journal of Energy Storage, 2021, 33: 100913. DOI: 10.1016/j.est.2019.100913.
|
[7] |
ZHOU Z Z, WANG D, PENG Y, et al. Experimental study on the thermal management performance of phase change material module for the large format prismatic lithium-ion battery[J]. Energy, 2022, 238: 122081. DOI: 10.1016/j.energy.2021.122081.
|
[8] |
MBULU H, LAOONUAL Y, WONGWISES S. Experimental study on the thermal performance of a battery thermal management system using heat pipes[J]. Case Studies in Thermal Engineering, 2021, 26: 101029. DOI: 10.1016/j.csite.2021.101029.
|
[9] |
HE J S, YANG X Q, ZHANG G Q. A phase change material with enhanced thermal conductivity and secondary heat dissipation capability by introducing a binary thermal conductive skeleton for battery thermal management[J]. Applied Thermal Engineering, 2019, 148: 984-991. DOI: 10.1016/j.applthermaleng.2018.11.100.
|
[10] |
WU X Y, ZHU Z H, ZHANG H Y, et al. Structural optimization of light-weight battery module based on hybrid liquid cooling with high latent heat PCM[J]. International Journal of Heat and Mass Transfer, 2020, 163: 120495. DOI: 10.1016/j.ijheatmasstransfer. 2020.120495.
|
[11] |
GAO C, SUN K, SONG K W, et al. Performance improvement of a thermal management system for Lithium-ion power battery pack by the combination of phase change material and heat pipe[J]. Journal of Energy Storage, 2024, 82: 110512. DOI: 10.1016/j.est.2024.110512.
|
[12] |
QIN P, LIAO M R, ZHANG D F, et al. Experimental and numerical study on a novel hybrid battery thermal management system integrated forced-air convection and phase change material[J]. Energy Conversion and Management, 2019, 195: 1371-1381. DOI: 10.1016/j.enconman.2019.05.084.
|
[13] |
AHMAD S, LIU Y H, KHAN S A, et al. Hybrid battery thermal management by coupling fin intensified phase change material with air cooling[J]. Journal of Energy Storage, 2023, 64: 107167. DOI: 10.1016/j.est.2023.107167.
|
[14] |
BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12. DOI: 10.1149/1.2113792.
|
[15] |
FAN X, MENG C, YANG Y W, et al. Numerical optimization of the cooling effect of a bionic fishbone channel liquid cooling plate for a large prismatic lithium-ion battery pack with high discharge rate[J]. Journal of Energy Storage, 2023, 72: 108239. DOI: 10.1016/j.est.2023.108239.
|
[16] |
周廷博. PCM冷板耦合强制风冷的电池热管理系统研究[D]. 南京: 南京农业大学, 2018.
|
|
ZHOU Y B. Research on the battery thermal management system with phase change material (PCM) cold plate coupled with forced air cooling[D]. Nanjing: Nanjing Agricultural University, 2018.
|
[17] |
王宇鹏. 相变冷却用于复合电池热管理系统的结构优化研究[D]. 长春: 吉林大学, 2020. DOI: 10.27162/d.cnki.gjlin.2020.005001.
|
|
WANG Y P. Study on structural optimization of thermal management system of composite battery with phase change cooling[D]. Changchun: Jilin University, 2020. DOI: 10.27162/d.cnki.gjlin.2020.005001.
|
[18] |
汪张洲, 唐天琪, 夏嘉俊, 等. 基于复合相变材料的电池热管理性能模拟[J]. 化工学报, 2024, 75(S1):329-338. DOI:10.11949/0438-1157.20240229.
|
|
WANG Z Z, TANG T Q, XIA J J, et al. Battery thermal management performance simulation based on composite phase change material[J]. CIESC Journal, 2024, 75(S1): 329-338. DOI:10.11949/0438-1157.20240229.
|
[19] |
安治国, 张显, 祝惠, 等. 蜂窝状CPCM/水冷复合式圆柱型锂电池散热性能[J]. 储能科学与技术, 2022, 11(1): 211-220. DOI: 10.19799/j.cnki.2095-4239.2021.0292.
|
|
AN Z G, ZHANG X, ZHU H, et al. Heat dissipation performance of honeycomb-like thermal management system combined CPCM with water cooling for lithium batteries[J]. Energy Storage Science and Technology, 2022, 11(1): 211-220. DOI: 10.19799/j.cnki.2095-4239.2021.0292.
|
[20] |
张文灿, 李星耀, 王道勇. 动力电池相变传热介质热管理系统影响因素分析[J]. 机械设计与制造, 2023(9): 226-230, 236. DOI: 10. 19356/j.cnki.1001-3997.20230207.016.
|
|
ZHANG W C, LI X Y, WANG D Y. The influencing factors importance analysis on thermal management system of phase change heat transfer medium for power battery[J]. Machinery Design & Manufacture, 2023(9): 226-230, 236. DOI: 10.19356/j.cnki.1001-3997.20230207.016.
|