[1] |
YANG L, ZHANG H, XU H T, et al. Interfacial catalysis strategy for high-performance solid-state lithium metal batteries[J]. Advanced Energy Materials, 2024, 14(39): 2401829. DOI: 10.1002/aenm. 202401829.
|
[2] |
ZHU Y Q, GAO Y J, CUI C H, et al. A strong-surface-polarity separator enables dendrite-free lithium metal anodes via coordinated garnet electrolyte[J]. Chemical Engineering Journal, 2023, 477: 147041. DOI: 10.1016/j.cej.2023.147041.
|
[3] |
YI X P, YANG Y, SONG J J, et al. Strategically tailored polyethylene separator parameters enable cost-effective, facile, and scalable development of ultra-stable liquid and all-solid-state lithium batteries[J]. Energy Storage Materials, 2025, 77: 104191. DOI: 10.1016/j.ensm.2025.104191.
|
[4] |
CHEN L, ZHANG H W, LIANG L Y, et al. Modulation of dendritic patterns during electrodeposition: A nonlinear phase-field model[J]. Journal of Power Sources, 2015, 300: 376-385. DOI: 10.1016/j. jpowsour.2015.09.055.
|
[5] |
ZHANG H W, LIU Z, LIANG L Y, et al. Understanding and predicting the lithium dendrite formation in Li-ion batteries: Phase field model[J]. ECS Transactions, 2014, 61(8): 1. DOI: 10.1149/06108.0001ecst.
|
[6] |
GAO L T, GUO Z S. Phase-field simulation of Li dendrites with multiple parameters influence[J]. Computational Materials Science, 2020, 183: 109919. DOI: 10.1016/j.commatsci. 2020. 109919.
|
[7] |
ZHAO H Y, LIAO C L, ZHANG C Z, et al. Phase-field modeling of lithium dendrite deposition process: When an internal short circuit occurs[J]. Journal of Energy Storage, 2024, 100: 113779. DOI: 10.1016/j.est.2024.113779.
|
[8] |
ZHANG B, ZHAO Y H, CHEN W P, et al. Phase field simulation of dendrite sidebranching during directional solidification of Al-Si alloy[J]. Journal of Crystal Growth, 2019, 522: 183-190. DOI: 10. 1016/j.jcrysgro.2019.06.027.
|
[9] |
WANG Z H, JIANG W J, ZHAO Y Z, et al. Chemo-mechanical coupling phase-field modeling of lithium dendrite growth within solid electrolyte[J]. Journal of Solid State Electrochemistry, 2023, 27(1): 245-253. DOI: 10.1007/s10008-022-05316-6.
|
[10] |
YANG H D, WANG Z J. Effects of pressure, temperature, and plasticity on lithium dendrite growth in solid-state electrolytes[J]. Journal of Solid State Electrochemistry, 2023, 27(10): 2607-2618. DOI: 10.1007/s10008-023-05560-4.
|
[11] |
FAN R, LIAO W C, FAN S X, et al. Regulating interfacial Li-ion transport via an integrated corrugated 3D skeleton in solid composite electrolyte for all-solid-state lithium metal batteries[J]. Advanced Science, 2022, 9(8): 2104506. DOI: 10.1002/advs. 202104506.
|
[12] |
MU W Y, LIU X L, WEN Z, et al. Numerical simulation of the factors affecting the growth of lithium dendrites[J]. Journal of Energy Storage, 2019, 26: 100921. DOI: 10.1016/j.est. 2019. 100921.
|
[13] |
FENG X F, DENG N P, YU W, et al. Review: Application of bionic-structured materials in solid-state electrolytes for high-performance lithium metal batteries[J]. ACS Nano, 2024, 18(24): 15387-15415. DOI: 10.1021/acsnano.4c02547.
|
[14] |
杨皓东. 锂金属本构及固态电解质内锂枝晶生长行为研究[D]. 成都: 西南交通大学, 2023. DOI: 10.27414/d.cnki.gxnju.2023.003132.
|
|
YANG H D. Constitutive behavior of lithium metal and growth behavior of lithium dendrites in solid electrolyte[D]. Chengdu: Southwest Jiaotong University, 2023. DOI: 10.27414/d.cnki.gxnju. 2023.003132.
|
[15] |
汪泽华. 固态电解质枝晶生长及其与电解质相互作用的相场法研究[D]. 湘潭: 湘潭大学, 2023. DOI: 10.27426/d.cnki.gxtdu. 2023. 000710.
|
|
WANG Z H. Phase field method study on dendrite growth and interaction with defects in solid electrolyte[D]. Xiangtan: Xiangtan University, 2023. DOI: 10.27426/d.cnki.gxtdu.2023.000710.
|
[16] |
翟艳芳, 杨佳悦, 邓齐波, 等. 聚合物基复合固态电解质中锂枝晶生长的相场模拟研究[J]. 固体力学学报, 2024, 45(5): 587-594. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2024.029.
|
|
ZHAI Y F, YANG J Y, DENG Q B, et al. Phase-field simulation of lithium dendrite growth in polymer-based composite solid-state electrolytes[J]. Chinese Journal of Solid Mechanics, 2024, 45(5): 587-594. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2024.029.
|
[17] |
侯鹏洋, 谢佳苗, 李京阳, 等. 基于力-热-电化学耦合下固态锂电池枝晶生长的相场模拟[J]. 物理学报, 2025, 74(7): 9-21.
|
|
HOU P Y, XIE J M, LI J Y, et al. Phase field simulation study of dendrite growth of solid-state lithium battery based on mechanical-thermal-electrochemical coupling[J]. Acta Physica Sinica, 2025, 74(7): 9-21.
|
[18] |
耿晓彬. 聚合物固态电解质电池锂枝晶生长相场模拟研究[D]. 武汉: 华中科技大学, 2024. DOI: 10.27157/d.cnki.ghzku.2024.002485.
|
|
GENG X B. Simulation of phase field of lithium dendrite growth in polymer solid-state electrolyte batteries[D]. Wuhan: Huazhong University of Science and Technology, 2024. DOI: 10.27157/d.cnki.ghzku.2024.002485.
|
[19] |
HOU J Y, SUN W, YUAN Q Y, et al. Multiscale engineered bionic solid-state electrolytes breaking the stiffness-damping trade-off[J]. Angewandte Chemie International Edition, 2025, 64(11): e202421427. DOI: 10.1002/anie.202421427.
|
[20] |
ZHENG Y, YAO Y Z, OU J H, et al. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures[J]. Chemical Society Reviews, 2020, 49(23): 8790-8839. DOI: 10.1039/D0CS00305K.
|
[21] |
黄义雄. 锂金属电池负极枝晶生长特性研究[D]. 大连: 大连理工大学, 2022. DOI: 10.26991/d.cnki.gdllu.2022.000644.
|
|
HUANG Y X. Study on dendrite growth characteristics of anode of lithium metal battery[D]. Dalian: Dalian University of Technology, 2022. DOI: 10.26991/d.cnki.gdllu.2022.000644.
|
[22] |
李亚捷, 陈斌, 王依平, 等. 定制电解液或隔膜实现锂离子各向异性输运从而抑制枝晶生长: 相场模拟研究[J]. 物理化学学报, 2024, 40(3): 77-78.
|
|
LI Y J, CHEN B, WANG Y P, et al. Inhibiting dendrite growth by customizing electrolyte or separator to achieve anisotropic lithium-ion transport: A phase-field study[J]. Acta Physico-Chimica Sinica, 2024, 40(3): 77-78.
|
[23] |
QIAN J, CHEN Q Y, HONG M, et al. Toward stretchable batteries: 3D-printed deformable electrodes and separator enabled by nanocellulose[J]. Materials Today, 2022, 54: 18-26. DOI: 10.1016/j.mattod.2022.02.015.
|
[24] |
ZHANG W D, SHEN Z Y, LI S Y, et al. Engineering wavy-nanostructured anode interphases with fast ion transfer kinetics: Toward practical Li-metal full batteries[J]. Advanced Functional Materials, 2020, 30(39): 2003800. DOI: 10.1002/adfm. 202003800.
|