储能科学与技术 ›› 2024, Vol. 13 ›› Issue (1): 193-211.doi: 10.19799/j.cnki.2095-4239.2023.0821

• 高比能二次电池关键材料与先进表征专刊 • 上一篇    下一篇

金属氯化物固态电解质及其全固态电池研究现状与展望

李枫1(), 程晓斌2(), 罗锦达2, 姚宏斌1,2()   

  1. 1.中国科学技术大学合肥微尺度物质科学国家研究中心
    2.中国科学技术大学化学与材料科学 学院,安徽 合肥 230026
  • 收稿日期:2023-11-15 修回日期:2023-11-17 出版日期:2024-01-05 发布日期:2024-01-22
  • 通讯作者: 姚宏斌 E-mail:fengli96@mail.ustc.edu.cn;cxb212317@mail.ustc.edu.cn;yhb@ustc.edu.cn
  • 作者简介:李枫(1996—),男,博士研究生,研究方向为金属氯化物固态电解质及其全固态电池,E-mail:fengli96@mail.ustc.edu.cn
    程晓斌(2000—)男,硕士研究生,研究方向为金属氯化物固态电解质及其全固态电池,E-mail:cxb212317@mail.ustc.edu.cn
  • 基金资助:
    国家自然科学基金(22325505)

Metal chloride solid-state electrolytes and all-solid-state batteries: State-of-the-art developments and perspectives

Feng LI1(), Xiaobin CHENG2(), Jinda LUO2, Hongbin YAO1,2()   

  1. 1.Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China
    2.School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China
  • Received:2023-11-15 Revised:2023-11-17 Online:2024-01-05 Published:2024-01-22
  • Contact: Hongbin YAO E-mail:fengli96@mail.ustc.edu.cn;cxb212317@mail.ustc.edu.cn;yhb@ustc.edu.cn

摘要:

基于无机固态电解质体系的全固态电池,具有高能量密度、长循环寿命和高安全性等特点,被认为是下一代电化学储能电池中备受期待的候选体系。实现高性能全固态电池的关键在于设计和制备具有高离子电导率、界面稳定且易形变的固态电解质材料。金属氯化物型固态电解质作为一种新兴的材料体系,同时具备氧化物固态电解质的抗氧化性以及硫化物固态电解质的高离子传导率和机械延展性,且制备过程简单,无须严苛的环境和极高的烧结温度,可规模化生产潜力大,正逐渐成为实现全固态电池商业化的技术路线竞争者之一。本文通过对近五年来相关电解质材料研究进展的深入分析,对金属氯化物固态电解质体系的研究现状进行了系统评述,涵盖了其合成方法学、晶体结构学、离子传导机制、性能优化策略、电极-电解质界面兼容性以及实用化可行性分析等多个方面。同时,展望了金属氯化物固态电解质未来可能的发展方向,为基于金属氯化物的高性能全固态电池的研究提供了理论和实验参考。

关键词: 金属氯化物, 固态电解质, 离子传导机制, 全固态电池

Abstract:

Solid-state batteries based on inorganic solid electrolytes with high energy density, long cycle life, and good safety are highly competitive candidates for the next generation of electrochemical energy storage systems. The key to achieving high-performance solid-state batteries is designing and fabricating solid electrolytes with high ionic conductivity, stable interfaces, and deformability. Metal chloride solid electrolytes (MCSEs), emerging as a novel material system, possess anti-oxidation stability of oxide solid electrolytes and high ionic conductivity and mechanical ductility of sulfide solid electrolytes. The fabrication process is simple and requires neither stringent environmental conditions nor extremely high sintering temperatures. It has substantial potential for scalable production, making it one of the most promising choices for commercializing solid-state batteries. This article, through an in-depth analysis of solid electrolyte research progress in the past five years, systematically reviews the research status of MCSEs. These aspects encompass synthesis methodologies, crystal structure studies, ion conduction mechanisms, performance optimization strategies, electrode-electrolyte interfaces, and the potential for practical applications. In addition, the future development directions of MCSEs and potential approaches to address interface issues are discussed, laying the theoretical and experimental foundations for developing high-performance solid-state lithium batteries based on MCSEs.

Key words: metal chlorides, solid-state electrolyte, ion conduction mechanism, all-solid-state batteries

中图分类号: