储能科学与技术 ›› 2024, Vol. 13 ›› Issue (1): 178-192.doi: 10.19799/j.cnki.2095-4239.2023.0784
• 高比能二次电池关键材料与先进表征专刊 • 上一篇 下一篇
李宇航(), 韩卓, 安旭飞, 张丹丰, 郑国瑞, 柳明(), 贺艳兵()
收稿日期:
2023-11-01
修回日期:
2023-11-06
出版日期:
2024-01-05
发布日期:
2024-01-22
通讯作者:
柳明,贺艳兵
E-mail:l-yh23@mails.tsinghua.edu.cn;liuming@sz.tsinghua.edu.cn;he.yanbing@sz.tsinghua.edu.cn
作者简介:
李宇航(1998—),男,博士研究生,研究方向为固态电解质,E-mail:l-yh23@mails.tsinghua.edu.cn;
基金资助:
Yuhang LI(), Zhuo HAN, Xufei AN, Danfeng ZHANG, Guorui ZHENG, Ming LIU(), Yanbing HE()
Received:
2023-11-01
Revised:
2023-11-06
Online:
2024-01-05
Published:
2024-01-22
Contact:
Ming LIU, Yanbing HE
E-mail:l-yh23@mails.tsinghua.edu.cn;liuming@sz.tsinghua.edu.cn;he.yanbing@sz.tsinghua.edu.cn
摘要:
中图分类号:
李宇航, 韩卓, 安旭飞, 张丹丰, 郑国瑞, 柳明, 贺艳兵. 固体核磁共振技术解析固态电池离子输运机制研究进展[J]. 储能科学与技术, 2024, 13(1): 178-192.
Yuhang LI, Zhuo HAN, Xufei AN, Danfeng ZHANG, Guorui ZHENG, Ming LIU, Yanbing HE. Progress of ion transport in solid-state battery research based on solid state nuclear magnetic resonance[J]. Energy Storage Science and Technology, 2024, 13(1): 178-192.
1 | LI S, ZHANG S Q, SHEN L, et al. Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries[J]. Advanced Science, 2020, 7(5): 1903088. |
2 | LEI D N, HE Y B, HUANG H J, et al. Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery[J]. Nature Communications, 2019, 10: 4244. |
3 | YANG K, CHEN L K, MA J B, et al. Stable interface chemistry and multiple ion transport of composite electrolyte contribute to ultra-long cycling solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries[J]. Angewandte Chemie International Edition, 2021, 60(46): 24668-24675. |
4 | KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686. |
5 | ZHU J P, XIANG Y X, ZHAO J, et al. Insights into the local structure, microstructure and ionic conductivity of silicon doped NASICON-type solid electrolyte Li1.3Al0.3Ti1.7P3O12[J]. Energy Storage Materials, 2022, 44: 190-196. |
6 | MI J S, CHEN L K, MA J B, et al. Defect strategy in solid-state lithium batteries[J]. Small Methods, 2023: 2301162. |
7 | LI C, SHEN M, HU B, JAP-CS. Solid-state NMR and EPR methods for metal ion battery research [J]. Acta Physico-Chimica Sini, 2020, 36(4):1902019. |
8 | ZHANG H, SHEN Y, YU Y, et al. Advances in the application of solid-state nuclear magnetic resonance for the study of ion diffusion mechanism in battery materials[J]. Energy Storage Science and Technology, 2020, 9: 78. |
9 | SHI Y, TANG M J A P C S. NMR/EPR Investigation of rechargeable batteries[J]. Acta Phys Chim Sin, 2019, 36: 1-9. |
10 | 钟贵明, 刘子庚, 王大为, 等. 锂/钠离子电池材料的固体核磁共振研究进展[J]. 电化学, 2016, 22(3): 231-243. |
ZHONG G M, LIU Z G, WANG D W, et al. Recent progress in solid-state NMR study of electrode/electrolyte materials for lithium/sodium ion batteries[J]. Journal of Electrochemistry, 2016, 22(3): 231-243. | |
11 | GANAPATHY S, YU C A, VAN ECK E R H, et al. Peeking across grain boundaries in a solid-state ionic conductor[J]. ACS Energy Letters, 2019, 4(5): 1092-1097. |
12 | DAWSON J A, CANEPA P, CLARKE M J, et al. Toward understanding the different influences of grain boundaries on ion transport in sulfide and oxide solid electrolytes[J]. Chemistry of Materials, 2019, 31(14): 5296-5304. |
13 | MIARA L J, ONG S P, MO Y F, et al. Effect of Rb and Ta doping on the ionic conductivity and stability of the garnet Li7+2 x-Y(La3- xRbx)(Zr2- yTay)O12 (0≤x≤0.375, 0≤y≤1) superionic conductor-a first principles investigation[J]. ECS Meeting Abstracts, 2013, (8): 576. |
14 | MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angewandte Chemie International Edition, 2007, 46(41): 7778-7781. |
15 | DAWSON J A, CANEPA P, FAMPRIKIS T, et al. Atomic-scale influence of grain boundaries on Li-ion conduction in solid electrolytes for all-solid-state batteries[J]. Journal of the American Chemical Society, 2018, 140(1): 362-368. |
16 | VINOD CHANDRAN C, SYLKE P, ELENA W, et al. Solid-state NMR investigations on the structure and dynamics of the ionic conductor Li1+ xAlxTi2- x(PO4)3 (0.0≤x≤1.0)[J]. The Journal of Physical Chemistry C, 2016, 120(16): 8436-8442. |
17 | BIAO J, HAN B, CAO Y D, et al. Inhibiting formation and reduction of Li2CO3 to LiCx at grain boundaries in garnet electrolytes to prevent Li penetration[J]. Advanced Materials, 2023, 35(12): 2208951. |
18 | GEIGER C A, ALEKSEEV E, LAZIC B, et al. Crystal chemistry and stability of "Li7La3Zr2O12" garnet: A fast lithium-ion conductor[J]. Inorganic Chemistry, 2011, 50(3): 1089-1097. |
19 | WANG D W, ZHONG G M, PANG W K, et al. Toward understanding the lithium transport mechanism in garnet-type solid electrolytes: Li+ ion exchanges and their mobility at octahedral/tetrahedral sites[J]. Chemistry of Materials, 2015, 27(19): 6650-6659. |
20 | XIANG Y X, ZHENG G R, ZHONG G M, et al. Toward understanding of ion dynamics in highly conductive lithium ion conductors: Some perspectives by solid state NMR techniques[J]. Solid State Ionics, 2018, 318: 19-26. |
21 | LIU M, CHENG Z, GANAPATHY S, et al. Tandem interface and bulk Li-ion transport in a hybrid solid electrolyte with microsized active filler[J]. ACS Energy Letters, 2019, 4(9): 2336-2342. |
22 | ZHENG J, TANG M X, HU Y Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes[J]. Angewandte Chemie International Edition, 2016, 55(40): 12538-12542. |
23 | ZHENG J, HU Y Y. New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 4113-4120. |
24 | PAN K C, ZHANG L, QIAN W W, et al. A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries[J]. Advanced Materials, 2020, 32(17): 2000399. |
25 | ZHAO L, YU X N, JIAO J Y, et al. Building cross-phase ion transport channels between ceramic and polymer for highly conductive composite solid-state electrolyte[J]. Cell Reports Physical Science, 2023, 4(5): 101382. |
26 | MI J S, MA J B, CHEN L K, et al. Topology crafting of polyvinylidene difluoride electrolyte creates ultra-long cycling high-voltage lithium metal solid-state batteries[J]. Energy Storage Materials, 2022, 48: 375-383. |
27 | SIMON F J, HANAUER M, HENSS A, et al. Properties of the interphase formed between argyrodite-type Li6PS5Cl and polymer-based PEO10: LiTFSI[J]. ACS Applied Materials & Interfaces, 2019, 11(45): 42186-42196. |
28 | SIMON F J, HANAUER M, RICHTER F H, et al. Interphase formation of PEO20: LiTFSI-Li6PS5Cl composite electrolytes with lithium metal[J]. ACS Applied Materials & Interfaces, 2020, 12(10): 11713-11723. |
29 | ZHENG J, WANG P B, LIU H Y, et al. Interface-enabled ion conduction in Li10GeP2S12-poly (ethylene oxide) hybrid electrolytes[J]. ACS Applied Energy Materials, 2019, 2(2): 1452-1459. |
30 | LIU M, ZHANG S N, VAN ECK E R V, et al. Improving Li-ion interfacial transport in hybrid solid electrolytes[J]. Nature Nanotechnology, 2022, 17: 959-967. |
31 | SHI P R, MA J B, LIU M, et al. A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries[J]. Nature Nanotechnology, 2023, 18(6): 602-610. |
32 | BROGIOLI D, LANGER F, KUN R, et al. Space-charge effects at the Li7La3Zr2O12/poly (ethylene oxide) interface[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11999-12007. |
33 | CHEN W P, DUAN H, SHI J L, et al. Bridging interparticle Li+ conduction in a soft ceramic oxide electrolyte[J]. Journal of the American Chemical Society, 2021, 143(15): 5717-5726. |
34 | LI J, CAI Y J, CUI Y Y, et al. Fabrication of asymmetric bilayer solid-state electrolyte with boosted ion transport enabled by charge-rich space charge layer for -20~70 ℃ lithium metal battery[J]. Nano Energy, 2022, 95: 107027. |
35 | WANG C, LIU M, THIJS M, et al. High dielectric Barium titanate porous scaffold for efficient Li metal cycling in anode-free cells[J]. Nature Communications, 2021, 12: 6536. |
36 | JIANG B B, IOCOZZIA J, ZHAO L, et al. Barium titanate at the nanoscale: Controlled synthesis and dielectric and ferroelectric properties[J]. Chemical Society Reviews, 2019, 48(4): 1194-1228. |
37 | KALININ S V, JOHNSON C Y, BONNELL D A. Domain polarity and temperature induced potential inversion on the BaTiO3(100) surface[J]. Journal of Applied Physics, 2002, 91(6): 3816-3823. |
38 | TAKADA K, OHTA N, ZHANG L Q, et al. Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte[J]. Solid State Ionics, 2012, 225: 594-597. |
39 | WU B B, WANG S Y, et al. Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems[J]. Journal of Materials Chemistry A, 2016, 4(40): 15266-15280. |
40 | XIA S H, ZHAO Y, YAN J H, et al. Dynamic regulation of lithium dendrite growth with electromechanical coupling effect of soft BaTiO3 ceramic nanofiber films[J]. ACS Nano, 2021, 15(2): 3161-3170. |
41 | YU C, GANAPATHY S, DE KLERK N J J, et al. Unravelling Li-ion transport from picoseconds to seconds: Bulk versus interfaces in an argyrodite Li6PS5Cl-Li2S all-solid-state Li-ion battery[J]. Journal of the American Chemical Society, 2016, 138(35): 11192-11201. |
42 | WANG C H, ADAIR K R, LIANG J W, et al. Solid-state plastic crystal electrolytes: Effective protection interlayers for sulfide-based all-solid-state lithium metal batteries[J]. Advanced Functional Materials, 2019, 29(26): 1900392. |
43 | SHI K, WAN Z P, YANG L, et al. In Situ construction of an ultra-stable conductive composite interface for high-voltage all-solid-state lithium metal batteries[J]. Angewandte Chemie International Edition, 2020, 132(29): 11882-11886. |
44 | HAO X G, ZHAO Q A, SU S M, et al. Constructing multifunctional interphase between Li1.4Al0.4Ti1.6(PO4)3 and Li metal by magnetron sputtering for highly stable solid-state lithium metal batteries[J]. Advanced Energy Materials, 2019, 9(34): 1901604. |
45 | WAN Z P, SHI K, HUANG Y F, et al. Three-dimensional alloy interface between Li6.4La3Zr1.4Ta0.6O12 and Li metal to achieve excellent cycling stability of all-solid-state battery[J]. Journal of Power Sources, 2021, 505: 230062. |
46 | MA J B, ZHONG G M, SHI P R, et al. Constructing a highly efficient "solid-polymer-solid" elastic ion transport network in cathodes activates the room temperature performance of all-solid-state lithium batteries[J]. Energy & Environmental Science, 2022, 15(4): 1503-1511. |
47 | WAN Z P, LEI D N, YANG W, et al. All-solid-state batteries: Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder[J]. Advanced Functional Materials, 2019, 29(1): 1805301. |
48 | LING H J, SHEN L, HUANG Y F, et al. Integrated structure of cathode and double-layer electrolyte for highly stable and dendrite-free all-solid-state Li-metal batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(51): 56995-57002. |
49 | XIAO G Y, XU H, BAI C, et al. Progress and perspectives of in situ polymerization method for lithium-based batteries[J]. Interdisciplinary Materials, 2023, 2(4): 609-634. |
50 | LIANG Z T, XIANG Y X, WANG K J, et al. Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy[J]. Nature Communications, 2023, 14: 259. |
51 | TAN D H S, WU E A, NGUYEN H, et al. Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte[J]. ACS Energy Letters, 2019, 4(10): 2418-2427. |
52 | LEE Y G, FUJIKI S, JUNG C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes[J]. Nature Energy, 2020, 5(4): 299-308. |
53 | PAN H, ZHANG M H, CHENG Z, et al. Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability[J]. Science Advances, 2022, 8(15): eabn4372. |
54 | LIU S J, ZHOU L, HAN J A, et al. Super long-cycling all-solid-state battery with thin Li6PS5Cl-based electrolyte[J]. Advanced Energy Materials, 2022, 12(25): 2200660. |
55 | LI Y, ARNOLD W, HALACOGLU S, et al. Phase-transition interlayer enables high-performance solid-state sodium batteries with sulfide solid electrolyte[J]. Advanced Functional Materials, 2021, 31(28): 2101636. |
56 | XU R C, HAN F D, JI X, et al. Interface engineering of sulfide electrolytes for all-solid-state lithium batteries[J]. Nano Energy, 2018, 53: 958-966. |
57 | WANG C, SUN X L, YANG L, et al. In situ ion-conducting protective layer strategy to stable lithium metal anode for all-solid-state sulfide-based lithium metal batteries[J]. Advanced Materials Interfaces, 2021, 8(1): 2001698. |
58 | LUO S T, LIU X Y, ZHANG X A, et al. Nanostructure of the interphase layer between a single Li dendrite and sulfide electrolyte in all-solid-state Li batteries[J]. ACS Energy Letters, 2022, 7(9): 3064-3071. |
59 | YUAN Y, CHEN L K, LI Y H, et al. Functional LiTaO3 filler with tandem conductivity and ferroelectricity for PVDF-based composite solid-state electrolyte[J]. Energy Materials and Devices, 2023, 1(1): 9370004. |
60 | TAO J M, CHEN Y, BHARDWAJ A, et al. Combating Li metal deposits in all-solid-state battery via the piezoelectric and ferroelectric effects[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(41): e2211059119. |
61 | GU T, CHEN L K, HUANG Y F, et al. Engineering ferroelectric interlayer between Li1.3Al0.3Ti1.7(PO4)3 and lithium metal for stable solid-state batteries operating at room temperature[J]. Energy & Environmental Materials, 2023, 6: e12531. |
62 | LIU M, WANG C, ZHAO C L, et al. Quantification of the Li-ion diffusion over an interface coating in all-solid-state batteries via NMR measurements[J]. Nature Communications, 2021, 12: 5943. |
63 | BANERJEE A, TANG H M, WANG X F, et al. Revealing nanoscale solid-solid interfacial phenomena for long-life and high-energy all-solid-state batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 43138-43145. |
64 | KOERVER R, AYGÜN I, LEICHTWEIß T, et al. Capacity fade in solid-state batteries: Interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes[J]. Chemistry of Materials, 2017, 29(13): 5574-5582. |
65 | KOERVER R, WALTHER F, AYGÜN I, et al. Redox-active cathode interphases in solid-state batteries[J]. Journal of Materials Chemistry A, 2017, 5(43): 22750-22760. |
66 | VARDAR G, BOWMAN W J, LU Q Y, et al. Structure, chemistry, and charge transfer resistance of the interface between Li7La3Zr2O12 electrolyte and LiCoO2 cathode[J]. Chemistry of Materials, 2018, 30(18): 6259-6276. |
67 | SCHWIETERT T K, ARSZELEWSKA V A, WANG C, et al. Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes[J]. Nature Materials, 2020, 19(4): 428-435. |
68 | CULVER S P, KOERVER R, ZEIER W, et al. On the functionality of coatings for cathode active materials in thiophosphate‐based all‐solid‐state batteries [J]. Advanced Energy Materials, 2019, 9(24): 1900626. |
69 | CHENG Z, LIU M, GANAPATHY S, et al. Revealing the impact of space-charge layers on the Li-ion transport in all-solid-state batteries[J]. Joule, 2020, 4(6): 1311-1323. |
70 | FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nature Materials, 2019, 18(12): 1278-1291. |
71 | ZOU Z Y, LI Y J, LU Z H, et al. Mobile ions in composite solids[J]. Chemical Reviews, 2020, 120(9): 4169-4221. |
72 | LIANG C C. Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes[J]. Journal of the Electrochemical Society, 1973, 120(10): 1289. |
73 | GUO X, MATEI I, JAMNIK J, et al. Defect chemical modeling of mesoscopic ion conduction in nanosized CaF2 / BaF2 multilayer heterostructures [J]. Physical Review B, 2007, 76(12): 125429. |
74 | BAIUTTI F, LOGVENOV G, GREGORI G, et al. High-temperature superconductivity in space-charge regions of lanthanum cuprate induced by two-dimensional doping[J]. Nature Communications, 2015, 6: 8586. |
75 | LU G Z, GENG F S, GU S Y, et al. Distinguishing the effects of the space-charge layer and interfacial side reactions on Li10GeP2S12-based all-solid-state batteries with stoichiometric-controlled LiCoO2[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 25556-25565. |
[1] | 武美玲, 牛磊, 李世友, 赵冬妮. 正极预锂化添加剂用于锂离子电池的研究进展[J]. 储能科学与技术, 2024, 13(3): 759-769. |
[2] | 徐熙祥, 赵越, 阮明岳, 李强. 基于磁性测试揭示CoO储锂机理[J]. 储能科学与技术, 2024, 13(1): 12-23. |
[3] | 李枫, 程晓斌, 罗锦达, 姚宏斌. 金属氯化物固态电解质及其全固态电池研究现状与展望[J]. 储能科学与技术, 2024, 13(1): 193-211. |
[4] | 欧阳意梅, 赵蒙蒙, 钟贵明, 彭章泉. 电化学储能界面的核磁共振谱学研究方法[J]. 储能科学与技术, 2024, 13(1): 157-166. |
[5] | 李卓, 郭新. 面向高比能固态电池的聚合物基电解质固化技术[J]. 储能科学与技术, 2024, 13(1): 212-230. |
[6] | 黄永浩, 臧国景, 朱霨亚, 廖友好, 李伟善. LiF添加剂改善含锂陶瓷隔膜与4.35 V LiNi0.8Co0.1Mn0.1O2 正极的界面稳定性[J]. 储能科学与技术, 2023, 12(8): 2361-2369. |
[7] | 赵争光, 陈振营, 翟光群, 张希, 庄小东. Sc/O掺杂硫化物固态电解质的制备及全固态电池性能[J]. 储能科学与技术, 2023, 12(8): 2412-2423. |
[8] | 郝增辉, 刘训良, 孟缘, 孟楠, 温治. 电极界面微观结构对固态锂离子电池性能的影响[J]. 储能科学与技术, 2023, 12(7): 2095-2104. |
[9] | 张佳怡, 翁素婷, 王兆翔, 王雪锋. 石墨负极界面SEI膜与锂离子电池热失控[J]. 储能科学与技术, 2023, 12(7): 2105-2118. |
[10] | 张慎然, 徐立环, 苏畅. 不同碳含量对SiO/C负极电化学性能的影响[J]. 储能科学与技术, 2023, 12(6): 1784-1793. |
[11] | 时文超, 刘宇, 张博冕, 李琪, 韩春华, 麦立强. 电解液添加剂稳定水系电池锌负极界面的研究进展[J]. 储能科学与技术, 2023, 12(5): 1589-1603. |
[12] | 余永诗, 夏先明, 黄弘扬, 姚雨, 芮先宏, 钟国彬, 苏伟, 余彦. 钠金属负极人工界面保护层的研究进展[J]. 储能科学与技术, 2023, 12(5): 1380-1391. |
[13] | 张文, 李爽, 陈诚, 谌强. 原位固化对硅氧负极性能的影响[J]. 储能科学与技术, 2023, 12(4): 1045-1050. |
[14] | 申晓宇, 朱璟, 岑官骏, 乔荣涵, 郝峻丰, 田孟羽, 季洪祥, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.12.1—2023.1.31)[J]. 储能科学与技术, 2023, 12(3): 639-653. |
[15] | 张慧敏, 王京, 王一博, 郑家新, 邱景义, 曹高萍, 张浩. 锂离子电池SEI多尺度建模研究展望[J]. 储能科学与技术, 2023, 12(2): 366-382. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||