储能科学与技术 ›› 2024, Vol. 13 ›› Issue (1): 193-211.doi: 10.19799/j.cnki.2095-4239.2023.0821
• 高比能二次电池关键材料与先进表征专刊 • 上一篇 下一篇
收稿日期:
2023-11-15
修回日期:
2023-11-17
出版日期:
2024-01-05
发布日期:
2024-01-22
通讯作者:
姚宏斌
E-mail:fengli96@mail.ustc.edu.cn;cxb212317@mail.ustc.edu.cn;yhb@ustc.edu.cn
作者简介:
李枫(1996—),男,博士研究生,研究方向为金属氯化物固态电解质及其全固态电池,E-mail:fengli96@mail.ustc.edu.cn基金资助:
Feng LI1(), Xiaobin CHENG2(), Jinda LUO2, Hongbin YAO1,2()
Received:
2023-11-15
Revised:
2023-11-17
Online:
2024-01-05
Published:
2024-01-22
Contact:
Hongbin YAO
E-mail:fengli96@mail.ustc.edu.cn;cxb212317@mail.ustc.edu.cn;yhb@ustc.edu.cn
摘要:
基于无机固态电解质体系的全固态电池,具有高能量密度、长循环寿命和高安全性等特点,被认为是下一代电化学储能电池中备受期待的候选体系。实现高性能全固态电池的关键在于设计和制备具有高离子电导率、界面稳定且易形变的固态电解质材料。金属氯化物型固态电解质作为一种新兴的材料体系,同时具备氧化物固态电解质的抗氧化性以及硫化物固态电解质的高离子传导率和机械延展性,且制备过程简单,无须严苛的环境和极高的烧结温度,可规模化生产潜力大,正逐渐成为实现全固态电池商业化的技术路线竞争者之一。本文通过对近五年来相关电解质材料研究进展的深入分析,对金属氯化物固态电解质体系的研究现状进行了系统评述,涵盖了其合成方法学、晶体结构学、离子传导机制、性能优化策略、电极-电解质界面兼容性以及实用化可行性分析等多个方面。同时,展望了金属氯化物固态电解质未来可能的发展方向,为基于金属氯化物的高性能全固态电池的研究提供了理论和实验参考。
中图分类号:
李枫, 程晓斌, 罗锦达, 姚宏斌. 金属氯化物固态电解质及其全固态电池研究现状与展望[J]. 储能科学与技术, 2024, 13(1): 193-211.
Feng LI, Xiaobin CHENG, Jinda LUO, Hongbin YAO. Metal chloride solid-state electrolytes and all-solid-state batteries: State-of-the-art developments and perspectives[J]. Energy Storage Science and Technology, 2024, 13(1): 193-211.
1 | KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1: 16030. |
2 | KOOHI-FAYEGH S, ROSEN M A. A review of energy storage types, applications and recent developments[J]. Journal of Energy Storage, 2020, 27: 101047. |
3 | CHOI D, SHAMIM N, CRAWFORD A, et al. Li-ion battery technology for grid application[J]. Journal of Power Sources, 2021, 511: 230419. |
4 | JANEK J, ZEIER W G. A solid future for battery development[J]. Nature Energy, 2016, 1: 16141. |
5 | KORTHAUER R. Handbuch Lithium-Ionen-Batterien[M]. Berlin, Heidelberg: Springer Berlin Heidelberg: 2013. |
6 | ZHANG Y, ZUO T T, POPOVIC J, et al. Towards better Li metal anodes: Challenges and strategies[J]. Materials Today, 2020, 33: 56-74. |
7 | ALBRTUS P, ANANDAN V, BAN C, et al. Challenges for and pathways toward Li-metal-based all-solid-state batteries[J]. ACS Energy Lett, 2021, 6, 4: 1399-1404. |
8 | MA X T, AZHARI L, WANG Y. Li-ion battery recycling challenges[J]. Chem, 2021, 7(11): 2843-2847. |
9 | FANG C C, WANG X F, MENG Y S. Key issues hindering a practical lithium-metal anode[J]. Trends in Chemistry, 2019, 1(2): 152-158. |
10 | MANTHIRAM A, YU X W, WANG S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2: 16103. |
11 | HU Y S. Batteries: Getting solid[J]. Nature Energy, 2016, 1: 16042. |
12 | CHEN R S, LI Q H, YU X Q, et al. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces[J]. Chemical Reviews, 2020, 120(14): 6820-6877. |
13 | LEWIS J A, TIPPENS J, CORTES F J Q, et al. Chemo-mechanical challenges in solid-state batteries[J]. Trends in Chemistry, 2019, 1(9): 845-857. |
14 | KASEMCHAINAN J, BRUCE P G. All-solid-state batteries and their remaining challenges[J]. Johnson Matthey Technology Review, 2018, 62(2): 177-180. |
15 | KERMAN K, LUNTZ A, VISWANATHAN V, et al. Review—Practical challenges hindering the development of solid state Li ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(7): A1731-A1744. |
16 | PASTA M, ARMSTRONG D, BROWN Z, et al. 2020 roadmap on solid-state batteries[J]. J. Phys: Energy. 2020, 2(3): 032008. |
17 | FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nature Materials, 2019, 18(12): 1278-1291. |
18 | ZHAO Q, STALIN S, ZHAO C Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nature Reviews Materials, 2020, 5(3): 229-252. |
19 | WANG C W, FU K, KAMMAMPATA S P, et al. Garnet-type solid-state electrolytes: Materials, interfaces, and batteries[J]. Chemical Reviews, 2020, 120(10): 4257-4300. |
20 | JIAN Z L, HU Y S, JI X L, et al. NASICON-structured materials for energy storage[J]. Advanced Materials, 2017, 29(20): 1601925. |
21 | ZHENG J F, PERRY B, WU Y Y. Antiperovskite superionic conductors: A critical review[J]. ACS Materials Au, 2021, 1(2): 92-106. |
22 | XIA W, ZHAO Y, ZHAO F P, et al. Antiperovskite electrolytes for solid-state batteries[J]. Chemical Reviews, 2022, 122(3): 3763-3819. |
23 | KANNO R, MURAYAMA M. Lithium ionic conductor thio-LISICON: The Li2S-GeS2-P2S5 system[J]. Journal of the Electrochemical Society, 2001, 148(7): A742. |
24 | MINAFRA N, CULVER S P, KRAUSKOPF T, et al. Effect of Si substitution on the structural and transport properties of superionic Li-argyrodites[J]. Journal of Materials Chemistry A, 2018, 6(2): 645-651. |
25 | KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686. |
26 | OHARA K, MITSUI A, MORI M, et al. Structural and electronic features of binary Li2S-P2S5 glasses[J]. Scientific Reports, 2016, 6: 21302. |
27 | WENZEL S, WEBER D A, LEICHTWEISS T, et al. Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte[J]. Solid State Ionics, 2016, 286: 24-33. |
28 | WANG Y, RICHARDS W D, ONG S P, et al. Design principles for solid-state lithium superionic conductors[J]. Nature Materials, 2015, 14(10): 1026-1031. |
29 | HAN X G, GONG Y H, FU K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries[J]. Nature Materials, 2017, 16(5): 572-579. |
30 | NIKODIMOS Y, HUANG C J, TAKLU B W, et al. Chemical stability of sulfide solid-state electrolytes: Stability toward humid air and compatibility with solvents and binders[J]. Energy & Environmental Science, 2022, 15(3): 991-1033. |
31 | HE B J, ZHANG F, XIN Y, et al. Halogen chemistry of solid electrolytes in all-solid-state batteries[J]. Nature Reviews Chemistry, 2023: 1-17. |
32 | ASANO T, SAKAI A, OUCHI S, et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries[J]. Advanced Materials, 2018, 30(44): 1803075. |
33 | WANG S, BAI Q, NOLAN A M, et al. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability[J]. Angewandte Chemie (International Ed in English), 2019, 58(24): 8039-8043. |
34 | RICHARDS W D, MIARA L J, WANG Y, et al. Interface stability in solid-state batteries[J]. Chemistry of Materials, 2016, 28(1): 266-273. |
35 | ZHU Y Z, HE X F, MO Y F. Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations[J]. ACS Applied Materials & Interfaces, 2015, 7(42): 23685-23693. |
36 | WANG C H, LIANG J W, LUO J, et al. A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries[J]. Science Advances, 2021, 7(37): eabh1896. |
37 | LI X N, LIANG J W, CHEN N, et al. Water-mediated synthesis of a superionic halide solid electrolyte[J]. Angewandte Chemie, 2019, 131(46): 16579-16584. |
38 | KANNO R, TAKEDA Y, TAKAHASHI A, et al. New double chloride in the LiCl-CoCl2 system[J]. Journal of Solid State Chemistry, 1987, 71(1): 196-204. |
39 | KANNO R, TAKEDA Y, YAMAMOTO O, et al. ChemInform abstract: Ionic conductivity and phase transition of the bromide spinels, Li2-2 xM1+ xBr4 (M: Mg, Mn)[J]. Chemischer Informationsdienst, 1986, 17(39): 1052. |
40 | KUSKE P, SCHÄFER W, LUTZ H D. Neutron diffraction studies on spinel type Li2ZnCl4[J]. Materials Research Bulletin, 1988, 23(12): 1805-1808. |
41 | LUTZ H D, SCHMIDT W, HAEUSELER H. Phase relationships of the lithium halide spinels Li2 MCl4-Li2 MBr4 with M = Mn, Fe, Cd[J]. Journal of Solid State Chemistry, 1985, 56(1): 21-25. |
42 | SCHMIDT W, LUTZ H. Fast ionic conductivity and dielectric properties of the lithium halide spinels Li2MnCl4, Li2CdCl4, Li2MnBr4, and Li2CdBr4[J]. Ber. Bunsen-Ges. Phys. Chem., 1984, 88(8): 720-723. |
43 | KANNO R, TAKEDA Y, MATSUMOTO A, et al. Synthesis, structure, ionic conductivity, and phase transformation of new double chloride spinel, Li2CrCl4[J]. Journal of Solid State Chemistry, 1988, 75(1): 41-51. |
44 | KENNEDY J H, ZHANG Z M, ECKERT H. Ionically conductive sulfide-based lithium glasses[J]. Journal of Non-Crystalline Solids, 1990, 123(1/2/3): 328-338. |
45 | LIANG J W, LI X N, WANG S, et al. Site-occupation-tuned superionic LixScCl3+ xHalide solid electrolytes for all-solid-state batteries[J]. Journal of the American Chemical Society, 2020, 142(15): 7012-7022. |
46 | SCHLEM R, MUY S, PRINZ N, et al. Mechanochemical synthesis: A tool to tune cation site disorder and ionic transport properties of Li3MCl6 (M=Y, Er) superionic conductors[J]. Advanced Energy Materials, 2020, 10(6): 1903719. |
47 | KWAK H, HAN D, LYOO J, et al. All-solid-state batteries: New cost-effective halide solid electrolytes for all-solid-state batteries: Mechanochemically prepared Fe3+-substituted Li2ZrCl6[J]. Advanced Energy Materials, 2021, 11(12): 2003190. |
48 | WANG K, REN Q Y, GU Z Q, et al. A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries[J]. Nature Communications, 2021, 12(1): 4410. |
49 | LI F, CHENG X B, LU L L, et al. Stable all-solid-state lithium metal batteries enabled by machine learning simulation designed halide electrolytes[J]. Nano Letters, 2022, 22(6): 2461-2469. |
50 | ZHOU L D, KWOK C Y, SHYAMSUNDER A, et al. A new halospinel superionic conductor for high-voltage all solid state lithium batteries[J]. Energy & Environmental Science, 2020, 13(7): 2056-2063. |
51 | ZHOU L D, ZUO T T, KWOK C Y, et al. High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes[J]. Nature Energy, 2022, 7(1): 83-93. |
52 | FU J M, WANG S, LIANG J W, et al. Superionic conducting halide frameworks enabled by interface-bonded halides[J]. Journal of the American Chemical Society, 2023, 145(4): 2183-2194. |
53 | YIN Y C, YANG J T, LUO J D, et al. A LaCl3-based lithium superionic conductor compatible with lithium metal[J]. Nature, 2023, 616(7955): 77-83. |
54 | CHEN S, YU C, CHEN S Q, et al. Enabling ultrafast lithium-ion conductivity of Li2ZrCl6 by indium doping[J]. Chinese Chemical Letters, 2022, 33(10): 4635-4639. |
55 | FU J Z, YANG S G, HOU J H, et al. Modeling assisted synthesis of Zr-doped Li3- xIn1- xZrxCl6 with ultrahigh ionic conductivity for lithium-ion batteries[J]. Journal of Power Sources, 2023, 556: 232465. |
56 | JUNG S K, GWON H, YOON G, et al. Pliable lithium superionic conductor for all-solid-state batteries[J]. ACS Energy Letters, 2021, 6(5): 2006-2015. |
57 | XU R N, YAO J M, ZHANG Z Q, et al. Room temperature halide-eutectic solid electrolytes with viscous feature and ultrahigh ionic conductivity[J]. Advanced Science, 2022, 9(35): 2204633. |
58 | TANAKA Y, UENO K, MIZUNO K, et al. New oxyhalide solid electrolytes with high lithium ionic conductivity >10 mS/cm for all-solid-state batteries[J]. Angewandte Chemie (International Ed in English), 2023, 62(13): e202217581. |
59 | BURMEISTER C F, KWADE A. Process engineering with planetary ball Mills[J]. Chemical Society Reviews, 2013, 42(18): 7660-7667. |
60 | LI X N, LIANG J W, LUO J, et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries[J]. Energy & Environmental Science, 2019, 12(9): 2665-2671. |
61 | KIM S Y, KAUP K, PARK K H, et al. Lithium ytterbium-based halide solid electrolytes for high voltage all-solid-state batteries[J]. ACS Materials Letters, 2021, 3(7): 930-938. |
62 | PAULING L. The principles determining the structure of complex ionic crystals[J]. Journal of the American Chemical Society, 1929, 51(4): 1010-1026. |
63 | SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(5): 751-767. |
64 | WANG C H, LIANG J W, KIM J T, et al. Prospects of halide-based all-solid-state batteries: From material design to practical application[J]. Science Advances, 2022, 8(36): eadc9516. |
65 | LISSNER F, KRÄMER K, SCHLEID T, et al. Die chloride Na3 xM2- xCl6 (M=La, Sm) und NaM2Cl6 (M=Nd, Sm): Derivate des UCl3-typs. synthese, kristallstruktur und röntgenabsorptionsspektroskopie (XANES)[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 1994, 620(3): 444-450. |
66 | PARK K H, KAUP K, ASSOUD A, et al. High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries[J]. ACS Energy Letters, 2020, 5(2): 533-539. |
67 | LIU Z T, MA S A, LIU J E, et al. High ionic conductivity achieved in Li3Y(Br3Cl3) mixed halide solid electrolyte via promoted diffusion pathways and enhanced grain boundary[J]. ACS Energy Letters, 2021, 6(1): 298-304. |
68 | KWAK H, WANG S, PARK J, et al. Emerging halide superionic conductors for all-solid-state batteries: Design, synthesis, and practical applications[J]. ACS Energy Letters, 2022, 7(5): 1776-1805. |
69 | KWAK H, KIM J S, HAN D, et al. Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries[J]. Nature Communications, 2023, 14: 2459. |
70 | LI X N, XU Y, ZHAO C T, et al. The universal super cation-conductivity in multiple-cation mixed chloride solid-state electrolytes[J]. Angewandte Chemie International Edition, 2023, 62(48): e202306433. |
71 | ZHANG S, ZHAO F, CHEN J, et al. A family of oxychloride amorphous solid electrolytes for long-cycling all-solid state lithium batteries[J]. Nat. Commun, 2023, 14(1): 3780. |
72 | BANERJEE A, WANG X F, FANG C C, et al. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes[J]. Chemical Reviews, 2020, 120(14): 6878-6933. |
73 | XIAO Y H, WANG Y, BO S H, et al. Understanding interface stability in solid-state batteries[J]. Nature Reviews Materials, 2019, 5(2): 105-126. |
74 | FITZHUGH W, WU F, YE L H, et al. A high-throughput search for functionally stable interfaces in sulfide solid-state lithium ion conductors[J]. Advanced Energy Materials, 2019, 9(21): 1900807. |
75 | XU L, TANG S, CHENG Y, et al. Interfaces in solid-state lithium batteries[J]. Joule, 2018, 2(10): 1991-2015. |
76 | JÜRGEN J, ZEIER WOLFGANG G. Challenges in speeding up solid-state battery development[J]. Nature Energy, 2023, 8(3): 230-240. |
77 | RIEGGER L M, SCHLEM R, SANN J, et al. Lithium-metal anode instability of the superionic halide solid electrolytes and the implications for solid-state batteries[J]. Angewandte Chemie (International Ed in English), 2021, 60(12): 6718-6723. |
78 | JI W X, ZHENG D, ZHANG X X, et al. A kinetically stable anode interface for Li3YCl6-based all-solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2021, 9(26): 15012-15018. |
79 | PARK C M, KIM J H, KIM H, et al. Li-alloy based anode materials for Li secondary batteries[J]. Chemical Society Reviews, 2010, 39(8): 3115-3141. |
80 | TAN D H S, CHEN Y T, YANG H D, et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes[J]. Science, 2021, 373(6562): 1494-1499. |
81 | HÄNSEL C, SINGH B, KIWIC D, et al. Favorable interfacial chemomechanics enables stable cycling of high-Li-content Li-In/Sn anodes in sulfide electrolyte-based solid-state batteries[J]. Chemistry of Materials, 2021, 33(15): 6029-6040. |
82 | PAN H, ZHANG M H, CHENG Z, et al. Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability[J]. Science Advances, 2022, 8(15): eabn4372. |
83 | LU Y, ZHAO C Z, ZHANG R, et al. The carrier transition from Li atoms to Li vacancies in solid-state lithium alloy anodes[J]. Science Advances, 2021, 7(38): eabi5520. |
84 | SHI X M, ZENG Z C, SUN M Z, et al. Fast Li-ion conductor of Li3HoBr6 for stable all-solid-state lithium-sulfur battery[J]. Nano Letters, 2021, 21(21): 9325-9331. |
85 | LI X N, LIANG J W, KIM J T, et al. Highly stable halide-electrolyte-based all-solid-state Li-Se batteries[J]. Advanced Materials, 2022, 34(20): 2200856. |
86 | PITZER K S. The nature of the chemical bond and the structure of molecules and crystals: An introduction to modern structural chemistry[J]. Journal of the American Chemical Society, 1960, 82(15): 4121. |
87 | Ashcroft, N., Mermin, N. Solid State Physics, Holt, Rinehart and Winston[J]. New York. 1976, 2005: 403. |
88 | JANG J, CHEN Y T, DEYSHER G, et al. Enabling a co-free, high-voltage LiNi0.5Mn1.5O4 cathode in all-solid-state batteries with a halide electrolyte[J]. ACS Energy Letters, 2022, 7(8): 2531-2539. |
89 | NIKODIMOS Y, SU W N, HWANG B J. Halide solid-state electrolytes: Stability and application for high voltage all-solid-state Li batteries[J]. Advanced Energy Materials, 2023, 13(3): 2202854. |
90 | KOCHETKOV I, ZUO T T, RUESS R, et al. Different interfacial reactivity of lithium metal chloride electrolytes with high voltage cathodes determines solid-state battery performance[J]. Energy & Environmental Science, 2022, 15(9): 3933-3944. |
91 | LI X N, LIANG J W, YANG X F, et al. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries[J]. Energy & Environmental Science, 2020, 13(5): 1429-1461. |
92 | ZHAO F P, ALAHAKOON S H, ADAIR K, et al. An air-stable and Li-metal-compatible glass-ceramic electrolyte enabling high-performance all-solid-state Li metal batteries[J]. Advanced Materials, 2021, 33(8): 2006577. |
93 | LI X N, LIANG J W, ADAIR K R, et al. Origin of superionic Li3Y1– xInxCl6 halide solid electrolytes with high humidity tolerance[J]. Nano Letters, 2020, 20(6): 4384-4392. |
94 | LI W H, LIANG J W, LI M S, et al. Unraveling the origin of moisture stability of halide solid-state electrolytes by in situ and Operando synchrotron X-ray analytical techniques[J]. Chemistry of Materials, 2020, 32(16): 7019-7027. |
95 | KATO Y, SHIOTANI S, MORITA K, et al. All-solid-state batteries with thick electrode configurations[J]. The Journal of Physical Chemistry Letters, 2018, 9(3): 607-613. |
96 | LI Y X, SONG S B, KIM H, et al. A lithium superionic conductor for millimeter-thick battery electrode[J]. Science, 2023, 381(6653): 50-53. |
[1] | 武美玲, 牛磊, 李世友, 赵冬妮. 正极预锂化添加剂用于锂离子电池的研究进展[J]. 储能科学与技术, 2024, 13(3): 759-769. |
[2] | 孙明明. 有机无机复合锂离子电池固态电解质专利分析[J]. 储能科学与技术, 2024, 13(3): 1096-1105. |
[3] | 赵争光, 陈振营, 翟光群, 张希, 庄小东. Sc/O掺杂硫化物固态电解质的制备及全固态电池性能[J]. 储能科学与技术, 2023, 12(8): 2412-2423. |
[4] | 刘欢, 彭娜, 高清雯, 李文鹏, 杨志荣, 王景涛. 冠醚掺杂的聚合物固态电解质对全固态锂电池性能的影响[J]. 储能科学与技术, 2023, 12(8): 2401-2411. |
[5] | 雷蕾, 高鹏, 冯娜娜, 蔡坤鹏, 张海, 张扬. 锆酸镧锂固态电解质合成过程多因素影响[J]. 储能科学与技术, 2023, 12(5): 1625-1635. |
[6] | 易永利, 于冉, 李武, 金翼, 戴哲仁. Mo, Al掺杂的Li7La3Zr2O12 基复合固态电解质的制备及全固态电池性能研究[J]. 储能科学与技术, 2023, 12(5): 1490-1499. |
[7] | 江训昌, 廖敏会, 周洋, 杨大祥, 王强. 纳米纤维膜基弹性固态电解质的设计及性能研究[J]. 储能科学与技术, 2023, 12(11): 3307-3317. |
[8] | 胡英瑛, 王静宜, 吴相伟, 温建国, 温兆银. 管式ZEBRA电池的长循环性能与电压弛豫曲线分析[J]. 储能科学与技术, 2022, 11(9): 3021-3027. |
[9] | 张俊, 李琦, 陶莹, 杨全红. 钠离子电池筛分型碳:缘起与进展[J]. 储能科学与技术, 2022, 11(9): 2825-2833. |
[10] | 王进芝, 韩晓蕾, 许超锋, 赵井文, 唐越, 崔光磊. 基于氧化物固态电解质的储能钠电池的研究进展[J]. 储能科学与技术, 2022, 11(9): 2834-2846. |
[11] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[12] | 魏超超, 余创, 吴仲楷, 彭林峰, 程时杰, 谢佳. Li3PS4 固态电解质的研究进展[J]. 储能科学与技术, 2022, 11(5): 1368-1382. |
[13] | 邓诗维, 吴剑芳, 时拓. 固体电解质缺陷化学分析:晶粒体点缺陷及晶界空间电荷层[J]. 储能科学与技术, 2022, 11(3): 939-947. |
[14] | 高清雯, 杨智昊, 李文鹏, 武文佳, 王景涛. 钴掺杂二氧化铈基层状复合固态电解质的制备及其性能[J]. 储能科学与技术, 2022, 11(12): 3776-3786. |
[15] | 张林森, 王士奇, 王利霞, 宋延华. PEO基Li+-g-C3N4 复合固态电解质的制备及其电化学性能[J]. 储能科学与技术, 2022, 11(11): 3463-3469. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||