储能科学与技术 ›› 2023, Vol. 12 ›› Issue (11): 3307-3317.doi: 10.19799/j.cnki.2095-4239.2023.0403

• 储能材料与器件 • 上一篇    下一篇

纳米纤维膜基弹性固态电解质的设计及性能研究

江训昌1(), 廖敏会2(), 周洋2, 杨大祥1,2,3, 王强1   

  1. 1.重庆交通大学
    2.重庆交通大学绿色航空技术研究院
    3.绿色航空能源动力重庆市重点实验室,重庆 400074
  • 收稿日期:2023-06-09 修回日期:2023-09-13 出版日期:2023-11-05 发布日期:2023-11-16
  • 通讯作者: 廖敏会 E-mail:2641996850@qq.com;939551239@qq.com
  • 作者简介:江训昌(1998—),男,硕士研究生,从事固态电解质研究,E-mail:2641996850@qq.com
  • 基金资助:
    重庆市自然科学基金面上项目(CSTB2022NSCQ-MSX0479);重庆市教育委员会科学技术研究项目(KJQN202000742)

Design and performance of nanofiber membrane-based elastic solid electrolyte

Xunchang JIANG1(), Minhui LIAO2(), Yang ZHOU2, Daxiang YANG1,2,3, Qiang WANG1   

  1. 1.Chongqing Jiaotong University
    2.The Green Aeromechanics Research Institute of Chongqing Jiaotong University
    3.Chongqing Key Laboratory of Green Aviation Energy and Power, Chongqing 400074, China
  • Received:2023-06-09 Revised:2023-09-13 Online:2023-11-05 Published:2023-11-16
  • Contact: Minhui LIAO E-mail:2641996850@qq.com;939551239@qq.com

摘要:

以双三氟甲基磺酰亚胺锂(LiTFSI)为锂盐,丙烯酸丁酯(BA)、氟代碳酸乙烯酯(FEC)等为复合原料组分,采用热引发原位聚合的方法制备以聚偏氟二乙烯(PVDF)纳米纤维膜为基膜的弹性聚合物固态电解质(SPE),PBA弹性体的引入可以增强复合膜的韧性并为锂枝晶穿刺提供缓冲空间,FEC阻燃添加剂的加入可以有效增强复合膜热稳定性和界面稳定性,通过其协同作用可以有效改善界面接触差、离子电导率低等问题;同时,PVDF中的—C—F官能团还有利于锂离子的吸附和锂盐的解离。PVDF纳米纤维膜的三维互通网状结构可以提供较大的比表面积,进而贡献更多的锂离子吸附位点,提供足够多的有序互通锂离子传递通道,并且PVDF纳米纤维膜的引入可以较大幅度提高复合固态电解质膜强度,有利于抑制锂枝晶的生长。结果表明,25 ℃条件下,含有PVDF纳米纤维的弹性复合固态电解质膜的离子电导率为3.9×10-4 S/cm,拉伸强度为13.8 MPa,耐热分解温度为200 ℃,离子迁移数为0.75,所制备的磷酸铁锂(LFP)|SPE|Li固态电池0.1 C放电比容量为167 mAh/g。其中,LFP/SPE/Li电池0.5 C循环120次的放电容量为122.3 mAh/g,容量保持率为95.9%。

关键词: 聚合物固态电解质, 纳米纤维膜, 弹性基质, 离子传输, 固态电池

Abstract:

This study prepares the elastic solid polymer electrolyte with polyvinylidene fluoride (PVDF) nanofiber as the base membrane by thermal initiation in-situ polymerization, with Li ditrifluoromethyl sulfonate imide as the Li salt, and butyl acrylate and fluoro-ethylene carbonate (FEC) as the raw materials of the composite solid electrolyte. The introduction of PBA elastomer can enhance the toughness of the composite film and provide buffer space for Li dendrite puncture. The addition of the FEC flame retardant additive can effectively increase the thermal stability and interface stability of the composite film. Furthermore, according to its synergistic effect, problems, such as poor interface contact and low ion conductivity, can be effectively solved. Moreover, the utilization of the functional groups containing C—F in PVDF can facilitate the adsorption of Li ions and the dissociation of Li salts. In addition, the three-dimensional interconnected network structure of PVDF nanofiber membranes can provide a larger specific-surface area, thereby contributing more Li-ion adsorption sites and providing sufficient ordered interconnected Li-ion transfer channels. The introduction of PVDF nanofiber membranes can greatly improve the strength of composite solid-electrolyte membranes, and this is beneficial for inhibiting the growth of Li dendrites. The results show that the ionic conductivity of the elastic, composite solid-electrolyte membrane containing PVDF nanofibers is 3.9 × 10-4 S/cm at 25 ℃, with tensile strength of 13.8 MPa, thermal decomposition temperature of 200 ℃, and Li+ transference number of 0.75. Furthermore, Lithium iron phosphate (LFP)|SPE|Li solid-state battery possesses an initial discharge capacity of 167 mAh/g at 0.1 C, and 122.3 mAh/g after 120 cycles at 0.5 with a capacity retention rate of 95.9%.

Key words: solid polymer electrolyte, nanofiber membrane, elastic matrix, ion transport, solid-state battery

中图分类号: