储能科学与技术 ›› 2024, Vol. 13 ›› Issue (1): 212-230.doi: 10.19799/j.cnki.2095-4239.2023.0848
• 高比能二次电池关键材料与先进表征专刊 • 上一篇 下一篇
收稿日期:
2023-11-24
修回日期:
2023-12-23
出版日期:
2024-01-05
发布日期:
2024-01-22
通讯作者:
郭新
E-mail:zhou_li@hust.edu.cn;xguo@hust.edu.cn
作者简介:
李卓(1988—),男,博士,研究方向为全固态电池及固态电解质,E-mail:zhou_li@hust.edu.cn;
基金资助:
Received:
2023-11-24
Revised:
2023-12-23
Online:
2024-01-05
Published:
2024-01-22
Contact:
Xin GUO
E-mail:zhou_li@hust.edu.cn;xguo@hust.edu.cn
摘要:
聚合物基电解质是最具应用前景的固体电解质,它可以在很大程度上缓解甚至解决二次电池中电解液的泄漏、挥发、燃烧和爆炸等潜在安全问题。但是,聚合物基电解质的制备涉及到从液体到固体的固化过程,通常存在工艺烦琐、排放高、厚度难以控制等问题。特别是在规模化生产高比能固态电池过程中,电解质的界面相容性、均匀性、厚度及制备/加工便利性十分重要,这些因素对聚合物基电解质的固化工艺来说是一个较大的挑战。基于此,本文全面总结了聚合物基电解质制备的非原位固化和原位固化两种固化工艺的具体方法,并通过实例重点阐述了固化工艺、固化机理、材料选择、固化工艺优缺点及其在锂二次电池中的应用和研究进展。最后,我们评估并展望了面向高比能固态电池的聚合物基电解质固化的关键材料选择、关键科学及工艺问题、普适性、规模化应用挑战和未来发展趋势。本综述有助于深入理解面向高比能固态电池的聚合物基电解质的固化工艺,有望促进聚合物基电解质及其固态电池的规模化生产和应用。
中图分类号:
李卓, 郭新. 面向高比能固态电池的聚合物基电解质固化技术[J]. 储能科学与技术, 2024, 13(1): 212-230.
Zhuo LI, Xin GUO. Solidification of polymer-based electrolytes for energy-density solid-state batteries[J]. Energy Storage Science and Technology, 2024, 13(1): 212-230.
1 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
2 | DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. |
3 | MOTAVALLI J. Technology: A solid future[J]. Nature, 2015, 526(7575): S96-S97. |
4 | 李杨, 丁飞, 桑林, 等. 全固态锂离子电池关键材料研究进展[J]. 储能科学与技术, 2016, 5(5): 615-626. |
LI Y, DING F, SANG L, et al. A review of key materials for all-solid-state lithium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(5): 615-626. | |
5 | JANEK J, ZEIER W G. A solid future for battery development[J]. Nature Energy, 2016, 1: 16141. |
6 | HU Y S. Batteries: Getting solid[J]. Nature Energy, 2016, 1: 16042. |
7 | TIAN Y S, ZENG G B, RUTT A, et al. Promises and challenges of next-generation "beyond Li-ion" batteries for electric vehicles and grid decarbonization[J]. Chemical Reviews, 2021, 121(3): 1623-1669. |
8 | 李泓. 全固态锂电池: 梦想照进现实[J]. 储能科学与技术, 2018, 7(2): 188-193. |
LI H. All-solid lithium battery: Dreams may come[J]. Energy Storage Science and Technology, 2018, 7(2): 188-193. | |
9 | BANERJEE A, WANG X F, FANG C C, et al. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes[J]. Chemical Reviews, 2020, 120(14): 6878-6933. |
10 | ZOU Z Y, LI Y J, LU Z H, et al. Mobile ions in composite solids[J]. Chemical Reviews, 2020, 120(9): 4169-4221. |
11 | MANTHIRAM A, YU X W, WANG S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2: 16103. |
12 | ZHAO Q, STALIN S, ZHAO C Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nature Reviews Materials, 2020, 5(3): 229-252. |
13 | ZHOU D, SHANMUKARAJ D, TKACHEVA A, et al. Polymer electrolytes for lithium-based batteries: Advances and prospects[J]. Chem, 2019, 5(9): 2326-2352. |
14 | LOPEZ J, MACKANIC D G, CUI Y, et al. Designing polymers for advanced battery chemistries[J]. Nature Reviews Materials, 2019, 4(5): 312-330. |
15 | LU X A, WANG Y M, XU X Y, et al. Polymer-based solid-state electrolytes for high-energy-density lithium-ion batteries-review[J]. Advanced Energy Materials, 2023, 13(38): 2301746. |
16 | CHEN R S, LI Q H, YU X Q, et al. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces[J]. Chemical Reviews, 2020, 120(14): 6820-6877. |
17 | 张建军, 杨金凤, 吴瀚, 等. 二次电池用原位生成聚合物电解质的研究进展[J]. 高分子学报, 2019, 50(9): 890-914. |
ZHANG J J, YANG J F, WU H, et al. Research progress of in situ generated polymer electrolyte for rechargeable batteries[J]. Acta Polymerica Sinica, 2019, 50(9): 890-914. | |
18 | LI Q A, YANG Y, YU X Q, et al. A 700 W⋅h⋅kg-1 rechargeable pouch type lithium battery[J]. Chinese Physics Letters, 2023, 40(4): 048201. |
19 | WANG Z Y, SHEN L, DENG S G, et al. 10 μm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries[J]. Advanced Materials, 2021, 33(25): e2100353. |
20 | FAN L Z, HE H C, NAN C W. Tailoring inorganic-polymer composites for the mass production of solid-state batteries[J]. Nature Reviews Materials, 2021, 6(11): 1003-1019. |
21 | BI Z J, GUO X X. Solidification for solid-state lithium batteries with high energy density and long cycle life[J]. Energy Materials, 2022, 2(2): 200011. |
22 | CHO Y G, HWANG C, CHEONG D S, et al. Gel polymer electrolytes: Gel/solid polymer electrolytes characterized by in situ gelation or polymerization for electrochemical energy systems (adv. mater. 20/2019)[J]. Advanced Materials, 2019, 31(20): e1804909. |
23 | ZHAO Q, LIU X, STALIN S, et al. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries[J]. Nature Energy, 2019, 4(5): 365-373. |
24 | XIANG J W, ZHANG Y, ZHANG B, et al. A flame-retardant polymer electrolyte for high performance lithium metal batteries with an expanded operation temperature[J]. Energy & Environmental Science, 2021, 14(6): 3510-3521. |
25 | ZHAO C Z, ZHAO Q, LIU X, et al. Rechargeable lithium metal batteries with an In-built solid-state polymer electrolyte and a high voltage/loading Ni-rich layered cathode[J]. Advanced Materials, 2020, 32(12): e1905629. |
26 | ZHANG S H, SUN F, DU X F, et al. In-situ polymerized lithium salt as polymer electrolyte enabling high safety lithium metal batteries[J]. Energy & Environmental Science, 2023, 16(6): 2591-2602. |
27 | LIU Q, WANG L, HE X M. Toward practical solid-state polymer lithium batteries by in situ polymerization process: A review[J]. Advanced Energy Materials, 2023, 13(30): 2300798. |
28 | XIAO G Y, XU H, BAI C, et al. Progress and perspectives of in situ polymerization method for lithium-based batteries[J]. Interdisciplinary Materials, 2023, 2(4): 609-634. |
29 | LI Z, FU J L, GUO X. How to commercialize solid-state batteries: A perspective from solid electrolytes[J]. National Science Open, 2023, 2(1): 20220036. |
30 | CHEN L, LI Y T, LI S P, et al. PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic"[J]. Nano Energy, 2018, 46: 176-184. |
31 | LI D, CHEN L, WANG T S, et al. 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(8): 7069-7078. |
32 | XUE Z G, HE D, XIE X L. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(38): 19218-19253. |
33 | LI Z, FU J L, ZHOU X Y, et al. Ionic conduction in polymer-based solid electrolytes[J]. Advanced Science, 2023, 10(10): 2201718. |
34 | ZHANG X E, LIU T, ZHANG S F, et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes[J]. Journal of the American Chemical Society, 2017, 139(39): 13779-13785. |
35 | YAO P C, ZHU B, ZHAI H W, et al. PVDF/palygorskite nanowire composite electrolyte for 4 V rechargeable lithium batteries with high energy density[J]. Nano Letters, 2018, 18(10): 6113-6120. |
36 | LIU J F, WU Z Y, STADLER F J, et al. High dielectric poly(vinylidene fluoride)-based polymer enables uniform lithium-ion transport in solid-state ionogel electrolytes[J]. Angewandte Chemie International Edition, 2023, 62(26): e202300243. |
37 | XIAO W, WANG Z Y, ZHANG Y, et al. Enhanced performance of P(VDF-HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid particles PMMA-ZrO2 for lithium ion batteries[J]. Journal of Power Sources, 2018, 382: 128-134. |
38 | LIU W, LIU N A, SUN J E, et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J]. Nano Letters, 2015, 15(4): 2740-2745. |
39 | LIN Z Y, GUO X W, WANG Z C, et al. A wide-temperature superior ionic conductive polymer electrolyte for lithium metal battery[J]. Nano Energy, 2020, 73: 104786. |
40 | LI Z, HUANG H M, ZHU J K, et al. Ionic conduction in composite polymer electrolytes: Case of PEO: Ga-LLZO composites[J]. ACS Applied Materials & Interfaces, 2019, 11(1): 784-791. |
41 | LI Z, GUO X. Integrated interface between composite electrolyte and cathode with low resistance enables ultra-long cycle-lifetime in solid-state lithium-metal batteries[J]. Science China Chemistry, 2021, 64(4): 673-680. |
42 | LI Z, SHA W X, GUO X. Three-dimensional garnet framework-reinforced solid composite electrolytes with high lithium-ion conductivity and excellent stability[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 26920-26927. |
43 | ZHOU X Y, LI X G, LI Z, et al. Hybrid electrolytes with an ultrahigh Li-ion transference number for lithium-metal batteries with fast and stable charge/discharge capability[J]. Journal of Materials Chemistry A, 2021, 9(34): 18239-18246. |
44 | WU J F, YU Z Y, WANG Q, et al. High performance all-solid-state sodium batteries actualized by polyethylene oxide/Na2Zn2TeO6 composite solid electrolytes[J]. Energy Storage Materials, 2020, 24: 467-471. |
45 | MA Y X, WAN J Y, YANG Y F, et al. Scalable, ultrathin, and high-temperature-resistant solid polymer electrolytes for energy-dense lithium metal batteries[J]. Advanced Energy Materials, 2022, 12(15): doi:10.1002/aenm.202103720. |
46 | ZENG X X, YIN Y X, LI N W, et al. Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries[J]. Journal of the American Chemical Society, 2016, 138(49): 15825-15828. |
47 | ZENG X X, YIN Y X, SHI Y, et al. Lithiation-derived repellent toward lithium anode safeguard in quasi-solid batteries[J]. Chem, 2018, 4(2): 298-307. |
48 | ZHANG Y, YU L, ZHANG X D, et al. A smart risk-responding polymer membrane for safer batteries[J]. Science Advances, 2023, 9(5): eade5802. |
49 | WEI Z Y, ZHANG Z H, CHEN S J, et al. UV-cured polymer electrolyte for LiNi0.85Co0.05Al0.1O2// Li solid state battery working at ambient temperature[J]. Energy Storage Materials, 2019, 22: 337-345. |
50 | HA H J, KIL E H, KWON Y H, et al. UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries[J]. Energy & Environmental Science, 2012, 5(4): 6491-6499. |
51 | DUAN H, YIN Y X, ZENG X X, et al. In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries[J]. Energy Storage Materials, 2018, 10: 85-91. |
52 | XIE H X, FU Q G, LI Z, et al. Ultraviolet-cured semi-interpenetrating network polymer electrolytes for high-performance quasi-solid-state lithium metal batteries[J]. Chemistry, 2021, 27(28): 7773-7780. |
53 | LI Z, WENG S T, FU J L, et al. Nonflammable quasi-solid electrolyte for energy-dense and long-cycling lithium metal batteries with high-voltage Ni-rich layered cathodes[J]. Energy Storage Materials, 2022, 47: 542-550. |
54 | LU Q W, HE Y B, YU Q P, et al. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte[J]. Advanced Materials, 2017, 29(13): 1604460. |
55 | WANG W P, ZHANG J A, CHOU J A, et al. Solidifying cathode-electrolyte interface for lithium-sulfur batteries[J]. Advanced Energy Materials, 2021, 11(2): 2000791. |
56 | WU H, TANG B, DU X F, et al. LiDFOB initiated in situ polymerization of novel eutectic solution enables room-temperature solid lithium metal batteries[J]. Advanced Science, 2020, 7(23): 2003370. |
57 | YUAN Z X, ZHANG H, HU S J, et al. Research progress of ion-initiated in situ generated solid polymer electrolytes for high-safety lithium batteries[J]. Acta Chimica Sinica, 2023, 81(8): 1064. |
58 | 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997. |
LI W T, ZHONG H, MAI Y H. In-situ polymerization electrolytes for lithium rechargeable batteries[J]. Progress in Chemistry, 2021, 33(6): 988-997. | |
59 | CHAI J C, LIU Z H, MA J, et al. In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries[J]. Advanced Science, 2017, 4(2): 1600377. |
60 | LV Z L, ZHOU Q, ZHANG S, et al. Cyano-reinforced in situ polymer electrolyte enabling long-life cycling for high-voltage lithium metal batteries[J]. Energy Storage Materials, 2021, 37: 215-223. |
61 | CHEN M, ZHONG M J, JOHNSON J A. Light-controlled radical polymerization: Mechanisms, methods, and applications[J]. Chemical Reviews, 2016, 116(17): 10167-10211. |
62 | BONARDI A H, BONARDI F, NOIRBENT G, et al. Free-radical polymerization upon near-infrared light irradiation, merging photochemical and photothermal initiating methods[J]. Journal of Polymer Science, 2020, 58(2): 300-308. |
63 | VIJAYAKUMAR V, ANOTHUMAKKOOL B, KURUNGOT S, et al. in situ polymerization process: An essential design tool for lithium polymer batteries[J]. Energy & Environmental Science, 2021, 14(5): 2708-2788. |
64 | JU J W, WANG Y T, CHEN B B, et al. Integrated interface strategy toward room temperature solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(16): 13588-13597. |
65 | WANG A X, GENG S X, ZHAO Z F, et al. In situ cross-linked plastic crystal electrolytes for wide-temperature and high-energy-density lithium metal batteries[J]. Advanced Functional Materials, 2023, 33(17): 2201861. |
66 | KITZ P G, LACEY M J, NOVÁK P, et al. Operando investigation of the solid electrolyte interphase mechanical and transport properties formed from vinylene carbonate and fluoroethylene carbonate[J]. Journal of Power Sources, 2020, 477: 228567. |
67 | TAN S J, YUE J P, TIAN Y F, et al. In-situ encapsulating flame-retardant phosphate into robust polymer matrix for safe and stable quasi-solid-state lithium metal batteries[J]. Energy Storage Materials, 2021, 39: 186-193. |
68 | LI Z, XIE H X, ZHANG X Y, et al. in situ thermally polymerized solid composite electrolytes with a broad electrochemical window for all-solid-state lithium metal batteries[J]. Journal of Materials Chemistry A, 2020, 8(7): 3892-3900. |
69 | LI Z, ZHOU X Y, GUO X. High-performance lithium metal batteries with ultraconformal interfacial contacts of quasi-solid electrolyte to electrodes[J]. Energy Storage Materials, 2020, 29: 149-155. |
70 | ZHOU D, LIU R L, ZHANG J, et al. In situ synthesis of hierarchical poly(ionic liquid)-based solid electrolytes for high-safety lithium-ion and sodium-ion batteries[J]. Nano Energy, 2017, 33: 45-54. |
71 | ZHU J, ZHANG J P, ZHAO R Q, et al. in situ 3D crosslinked gel polymer electrolyte for ultra-long cycling, high-voltage, and high-safety lithium metal batteries[J]. Energy Storage Materials, 2023, 57: 92-101. |
72 | SCHAPPACHER M, DEFFIEUX A. Nature of active species in the living cationic polymerization of vinyl ethers initiated by hydrogen halide/zinc halide systems[J]. Macromolecules, 1991, 24(14): 4221-4223. |
73 | AOSHIMA S, KANAOKA S. A renaissance in living cationic polymerization[J]. Chemical Reviews, 2009, 109(11): 5245-5287. |
74 | HWANG S S, CHO C G, KIM H. Room temperature cross-linkable gel polymer electrolytes for lithium ion batteries by in situ cationic polymerization of divinyl ether[J]. Electrochemistry Communications, 2010, 12(7): 916-919. |
75 | ZHANG J J, WEN H J, YUE L P, et al. In situ formation of polysulfonamide supported poly(ethylene glycol) divinyl ether based polymer electrolyte toward monolithic sodium ion batteries[J]. Small, 2017, 13(2): 10.1002/smll.201601530. |
76 | NUYKEN O, PASK S. Ring-opening polymerization—An introductory review[J]. Polymers, 2013, 5(2): 361-403. |
77 | ZHOU D, HE Y B, CAI Q, et al. Investigation of cyano resin-based gel polymer electrolyte: in situ gelation mechanism and electrode-electrolyte interfacial fabrication in lithium-ion battery[J]. Journal of Materials Chemistry A, 2014, 2(47): 20059-20066. |
78 | ZHANG J N, WU H, DU X F, et al. Smart deep eutectic electrolyte enabling thermally induced shutdown toward high-safety lithium metal batteries[J]. Advanced Energy Materials, 2023, 13(3): doi: 10.1002/aenm.202202529. |
79 | PENCZEK St, DUDA Andrzej, KUBISA Przemyslaw, SLOMKOWSKI Stanislaw. Ionic and Coordination Ring‐Opening Polymerization. In Macromolecular Engineering, 2007,doi: 10.1002/9783527815562. mme0026. |
80 | KUBISA P, PENCZEK S. Cationic activated monomer polymerization of heterocyclic monomers[J]. Progress in Polymer Science, 1999, 24(10): 1409-1437. |
81 | PENCZEK S, PRETULA J, SLOMKOWSKI S. Ring-opening polymerization[J]. Chemistry Teacher International, 2021, 3(2): 33-57. |
82 | LIU F Q, WANG W P, YIN Y X, et al. Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries[J]. Science Advances, 2018, 4(10): eaat5383. |
83 | MA Q A, YUE J P, FAN M, et al. Formulating the electrolyte towards high-energy and safe rechargeable lithium-metal batteries[J]. Angewandte Chemie International Edition, 2021, 60(30): 16554-16560. |
84 | LI Z, YU R, WENG S T, et al. Tailoring polymer electrolyte ionic conductivity for production of low-temperature operating quasi-all-solid-state lithium metal batteries[J]. Nature Communications, 2023, 14: 482. |
85 | HIRAO A, GOSEKI R, ISHIZONE T. Advances in living anionic polymerization: From functional monomers, polymerization systems, to macromolecular architectures[J]. Macromolecules, 2014, 47(6): 1883-1905. |
86 | ISHIZONE T, GOSEKI R. Anionic addition polymerization (fundamental)[M]// Encyclopedia of Polymeric Nanomaterials. Berlin, Heidelberg: Springer, 2014: 1-11. |
87 | KITAURA T, KITAYAMA T. Anionic polymerization of methyl methacrylate by difunctional lithium amide initiators with trialkylsilyl protection[J]. Polymer Journal, 2013, 45(10): 1013-1018. |
88 | PARK J, KIM A, KIM B S. Anionic ring-opening polymerization of functional epoxide monomers in the solid state[J]. Nature Communications, 2023, 14: 5855. |
89 | BROCAS A L, MANTZARIDIS C, TUNC D, et al. Polyether synthesis: From activated or metal-free anionic ring-opening polymerization of epoxides to functionalization[J]. Progress in Polymer Science, 2013, 38(6): 845-873. |
90 | HONG K L, UHRIG D, MAYS J W. Living anionic polymerization[J]. Current Opinion in Solid State and Materials Science, 1999, 4(6): 531-538. |
91 | CUI Y Y, CHAI J C, DU H P, et al. Facile and reliable in situ polymerization of poly(ethyl cyanoacrylate)-based polymer electrolytes toward flexible lithium batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(10): 8737-8741. |
92 | LEI X F, LIU X Z, MA W Q, et al. Flexible lithium–air battery in ambient air with an In Situ formed gel electrolyte[J]. Angewandte Chemie International Edition, 2018, 57(49): 16131-16135. |
93 | ITO S, UNEMOTO A, OGAWA H, et al. Application of quasi-solid-state silica nanoparticles-ionic liquid composite electrolytes to all-solid-state lithium secondary battery[J]. Journal of Power Sources, 2012, 208: 271-275. |
94 | YI Q A, ZHANG W Q, LI S Q, et al. Durable sodium battery with a flexible Na3Zr2Si2PO12-PVDF-HFP composite electrolyte and sodium/carbon cloth anode[J]. ACS Applied Materials & Interfaces, 2018, 10(41): 35039-35046. |
95 | KIM J K, SCHEERS J, PARK T J, et al. Superior ion-conducting hybrid solid electrolyte for all-solid-state batteries[J]. ChemSusChem, 2015, 8(4): 636-641. |
96 | XU D, SU J M, JIN J, et al. In situ generated fireproof gel polymer electrolyte with Li6.4Ga0.2La3Zr2O12 As initiator and ion-conductive filler[J]. Advanced Energy Materials, 2019, 9(25): 1900611. |
[1] | 李宇航, 韩卓, 安旭飞, 张丹丰, 郑国瑞, 柳明, 贺艳兵. 固体核磁共振技术解析固态电池离子输运机制研究进展[J]. 储能科学与技术, 2024, 13(1): 178-192. |
[2] | 李枫, 程晓斌, 罗锦达, 姚宏斌. 金属氯化物固态电解质及其全固态电池研究现状与展望[J]. 储能科学与技术, 2024, 13(1): 193-211. |
[3] | 赵争光, 陈振营, 翟光群, 张希, 庄小东. Sc/O掺杂硫化物固态电解质的制备及全固态电池性能[J]. 储能科学与技术, 2023, 12(8): 2412-2423. |
[4] | 申晓宇, 朱璟, 岑官骏, 乔荣涵, 郝峻丰, 田孟羽, 季洪祥, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.12.1—2023.1.31)[J]. 储能科学与技术, 2023, 12(3): 639-653. |
[5] | 江训昌, 廖敏会, 周洋, 杨大祥, 王强. 纳米纤维膜基弹性固态电解质的设计及性能研究[J]. 储能科学与技术, 2023, 12(11): 3307-3317. |
[6] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[7] | 魏超超, 余创, 吴仲楷, 彭林峰, 程时杰, 谢佳. Li3PS4 固态电解质的研究进展[J]. 储能科学与技术, 2022, 11(5): 1368-1382. |
[8] | 甘露雨, 陈汝颂, 潘弘毅, 吴思远, 禹习谦, 李泓. 锂电池安全性多尺度研究策略:实验与模拟方法[J]. 储能科学与技术, 2022, 11(3): 852-865. |
[9] | 李素丽, 伍鹏, 肖益蓉, 于佩雯, 潘跃德, 杨文. 甲氧基聚乙二醇丙烯酸酯在全固态电池中的应用[J]. 储能科学与技术, 2022, 11(12): 3768-3775. |
[10] | 廖敏会, 杨大祥, 周洋, 万仁杰, 刘瑞平, 王强. 玻璃纤维布基多层复合固态电解质的制备及其性能[J]. 储能科学与技术, 2022, 11(10): 3090-3099. |
[11] | 张赛赛, 赵海雷. 石榴石型Li7La3Zr2O12固态锂金属电池的界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 863-871. |
[12] | 翟艳芳, 杨冠明, 侯望墅, 姚建尧, 温兆银, 宋树丰, 胡宁. 溶剂热法合成三维花瓣状石榴石型固态电解质及其在固态聚合物电解质中的应用[J]. 储能科学与技术, 2021, 10(3): 905-913. |
[13] | 闫汶琳, 吴凡, 李泓, 陈立泉. 含硅负极在硫化物全固态电池中的应用[J]. 储能科学与技术, 2021, 10(3): 821-835. |
[14] | 姜鹏峰, 石元盛, 李康万, 韩百川, 颜立全, 孙洋, 卢侠. 固态电解质锂镧锆氧(LLZO)的研究进展[J]. 储能科学与技术, 2020, 9(2): 523-537. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||