储能科学与技术 ›› 2024, Vol. 13 ›› Issue (1): 178-192.doi: 10.19799/j.cnki.2095-4239.2023.0784

• 高比能二次电池关键材料与先进表征专刊 • 上一篇    下一篇

固体核磁共振技术解析固态电池离子输运机制研究进展

李宇航(), 韩卓, 安旭飞, 张丹丰, 郑国瑞, 柳明(), 贺艳兵()   

  1. 清华大学深圳国际研究生院,材料研究院,广东 深圳 518055
  • 收稿日期:2023-11-01 修回日期:2023-11-06 出版日期:2024-01-05 发布日期:2024-01-22
  • 通讯作者: 柳明,贺艳兵 E-mail:l-yh23@mails.tsinghua.edu.cn;liuming@sz.tsinghua.edu.cn;he.yanbing@sz.tsinghua.edu.cn
  • 作者简介:李宇航(1998—),男,博士研究生,研究方向为固态电解质,E-mail:l-yh23@mails.tsinghua.edu.cn
  • 基金资助:
    国家自然科学联合基金(U2001220);国家自然科学基金(52203298)

Progress of ion transport in solid-state battery research based on solid state nuclear magnetic resonance

Yuhang LI(), Zhuo HAN, Xufei AN, Danfeng ZHANG, Guorui ZHENG, Ming LIU(), Yanbing HE()   

  1. Institute of Materials Research (iMR), Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong, China
  • Received:2023-11-01 Revised:2023-11-06 Online:2024-01-05 Published:2024-01-22
  • Contact: Ming LIU, Yanbing HE E-mail:l-yh23@mails.tsinghua.edu.cn;liuming@sz.tsinghua.edu.cn;he.yanbing@sz.tsinghua.edu.cn

摘要: <graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="2095-4239-2024-13-1-178/ACFB3BB8-64C7-4385-B393-9F61565BB4A5-F001.jpg"/></sec></p> <form name="refForm" action="showCorrelativeArticle.do" method=post target=_blank> <input type="hidden" name="searchSQL" value="" /> <input type=hidden name="keyword" value="" id="keyword"> <input type=hidden name="author" value="" id="author"> <p><strong>关键词: </strong> <a href="#" onClick="searchKeyword('https://esst.cip.com.cn','1','固态电池')">固态电池, </a> <a href="#" onClick="searchKeyword('https://esst.cip.com.cn','1','界面')">界面, </a> <a href="#" onClick="searchKeyword('https://esst.cip.com.cn','1','离子迁移')">离子迁移, </a> <a href="#" onClick="searchKeyword('https://esst.cip.com.cn','1','固体核磁共振')">固体核磁共振</a> </p> <p><strong>Abstract: </strong><p>Solid-state batteries are the most promising next-generation batteries due to their high-energy density and safety features. The ionic conductivity of solid electrolytes and the interface of solid-state batteries play crucial roles in determining their electrochemical performance. However, intrinsic ion migration across interfaces poses a challenge for achieving optimal electrochemical performance. Owing to the limitations of state-of-the-art characterization methods, it is difficult to analyze Li<sup>+</sup> transport across interfaces in solid-state batteries. Solid-state nuclear magnetic resonance (ssNMR) can be used to provide an invasive analysis of local structures and a quantitative study of ion transport, making it an important tool for solid-state battery research. This review summarizes recent studies by our team and other groups that have used ssNMR to study solid electrolytes and the electrode-electrolyte interface. Starting with an overview of the current obstacles in the development of solid-state batteries, this review provides a concise summary of universal ssNMR methods used in battery research. The key factors affecting the ionic conductivity of the solid electrolyte were analyzed, focusing on the grain boundaries, interfacial structures, and ion-diffusion pathways. This review also focuses on understanding the failure process between solid electrolytes and electrodes, and summarizes some modification methods that can contribute to the development of stable interfaces in solid-state batteries. Furthermore, this review provides a comprehensive summary of the role of space charges at solid electrolyte-electrode interfaces, which are key factors affecting the electrochemical performance of solid-state batteries. Finally, this review discusses future challenges, perspectives, and potential for further studies using ssNMR in the field of solid-state batteries.</p></p> <p><strong>Key words: </strong> <a href="#" onClick="searchEnKeyword('https://esst.cip.com.cn','1','solid-state battery')">solid-state battery, </a> <a href="#" onClick="searchEnKeyword('https://esst.cip.com.cn','1','interface')">interface, </a> <a href="#" onClick="searchEnKeyword('https://esst.cip.com.cn','1','ion transport')">ion transport, </a> <a href="#" onClick="searchEnKeyword('https://esst.cip.com.cn','1','solid-state nuclear magnetic resonance')">solid-state nuclear magnetic resonance</a> </p> </form> <!-- 分类号查询跳转 --> <form name="subjectSchemeForm" action="" method=post target=_blank> <input type="hidden" name="searchSQL" /> <input type="hidden" name="language" /> </form> <!--分类号--> <p> <strong> 中图分类号:  </strong> </p> <ul class="list-unstyled pacs"> <li> <p> <a href="#" onclick="subjectScheme('https://esst.cip.com.cn','TM 911','1');return false;" target="_blank"> TM 911 </a> </p> </li> </ul> <!--分类号end--> <div class="row hidden-xs hidden-sm"> <div class="col-xs-12 col-sm-2 col-md-2 col-lg-2 margin-bottom-10 text-center"> <div class="text-primary btn-menu"> <h4>引用本文</h4> </div> </div> <div class="col-xs-12 col-sm-10 col-md-10 col-lg-10 margin-bottom-10"> <div class="primary-border"> <p>李宇航, 韩卓, 安旭飞, 张丹丰, 郑国瑞, 柳明, 贺艳兵. 固体核磁共振技术解析固态电池离子输运机制研究进展[J]. 储能科学与技术, 2024, 13(1): 178-192. </p> <p>Yuhang LI, Zhuo HAN, Xufei AN, Danfeng ZHANG, Guorui ZHENG, Ming LIU, Yanbing HE. Progress of ion transport in solid-state battery research based on solid state nuclear magnetic resonance[J]. Energy Storage Science and Technology, 2024, 13(1): 178-192.</p> </div> </div> </div> <div class="row hidden-xs hidden-sm"> <div class="col-xs-12 col-sm-2 col-md-2 col-lg-2 margin-bottom-10 text-center"> <div class="btn-menu bs-callout-warning"> <h4>使用本文</h4> </div> </div> <div class="col-xs-12 col-sm-10 col-md-10 col-lg-10 margin-bottom-10"> <div class="primary-border"> <p> <b> <form name=mail action="https://esst.cip.com.cn/CN/article/sendMail.jsp" method=post target=_blank> <div class="bshare-custom pull-left"><div class="bsPromo bsPromo2"></div><a title="分享到微信" class="bshare-weixin" href="javascript:void(0);"></a><a title="分享到新浪微博" class="bshare-sinaminiblog" href="javascript:void(0);"></a><a title="分享到QQ空间" class="bshare-qzone"></a><a title="分享到腾讯微博" class="bshare-qqmb"></a><a title="更多平台" class="bshare-more bshare-more-icon more-style-addthis"></a><span class="BSHARE_COUNT bshare-share-count" style="float: none;">0</span></div><script type="text/javascript" charset="utf-8" src="https://static.bshare.cn/b/buttonLite.js#style=-1&uuid=&pophcol=2&lang=zh"></script><script type="text/javascript" charset="utf-8" src="https://static.bshare.cn/b/bshareC0.js"></script>     /   <a href="#" id="collectArticle" class="shouc"></a> <span id="collectCount"></span> /   <a onclick="mail.submit()" href="javascript:void(null)" class="tuij">推荐</a> <input type="hidden" value='我在《储能科学与技术》上发现了关于“固体核磁共振技术解析固态电池离子输运机制研究进展”的文章,特向您推荐。请打开下面的网址:https://esst.cip.com.cn/CN/abstract/abstract2537.shtml' name="neirong"> <input type="hidden" name="thishref" value="https://esst.cip.com.cn/CN/abstract/abstract2537.shtml"> <input type="hidden" name="jname" value="储能科学与技术"> <input type="hidden" name="title" value='固体核磁共振技术解析固态电池离子输运机制研究进展'> <form> </b> </p> <p><b>导出引用管理器</b> <span class="daochu"><a href="https://esst.cip.com.cn/CN/article/getTxtFile.do?fileType=EndNote&id=2537" id="ris_export">EndNote</a>|<a href="https://esst.cip.com.cn/CN/article/getTxtFile.do?fileType=Ris&id=2537">Reference Manager</a>|<a href="https://esst.cip.com.cn/CN/article/getTxtFile.do?fileType=ProCite&id=2537">ProCite</a>|<a id="bibtex_export" href="https://esst.cip.com.cn/CN/article/getTxtFile.do?fileType=BibTeX&id=2537">BibTeX</a>|<a href="https://esst.cip.com.cn/CN/article/getTxtFile.do?fileType=RefWorks&id=2537">RefWorks</a></span> </p> <p><strong>链接本文:</strong> <a href="https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2023.0784" class="txt_zhaiyao1">https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2023.0784</a> </p> <p> <strong> </strong>              <a href="https://esst.cip.com.cn/CN/Y2024/V13/I1/178" class="txt_zhaiyao1"> https://esst.cip.com.cn/CN/Y2024/V13/I1/178</a> </p> </div> </div> </div> </div> </div> </div> <div class="panel panel-default" > <div class="panel-heading" role="tab" id="tubiao" onClick="xianshi(this)"> <h4 class="panel-title"> <a id="figure" class="collapsed" href="javascript:;"> 图/表 <span class="badge badge-info">8</span> </a> </h4> </div> <div id="collapseTwo" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingTwo" style="display: none;"> <div class="panel-body"> <!--start--> <div class="row figureCon"> <div class="col-lg-3 col-md-4 col-sm-6"> <div class="thumbnail"> <a class="figureClass" href="#figureClass34240" data-toggle="tooltip" data-placement="bottom" data-original-title="图1  LAO-LLZOF无机固态电解质 6Li-7Li置换实验结果[17](1 ppm=10-6)" data-original-title="图1  LAO-LLZOF无机固态电解质 6Li-7Li置换实验结果[17](1 ppm=10-6)"> <img src="https://esst.cip.com.cn/fileup/2095-4239/FIGURE/2024-13-1/Images/2095-4239-2024-13-1-178/thumbnail/ACFB3BB8-64C7-4385-B393-9F61565BB4A5-F002.jpg"> </a> <div style='display:none'> <div id='figureClass34240' style='padding:10px; background:#fff;'> <p style="text-align: center;"><b>图1</b></p> <p style="text-align: center;">LAO-LLZOF无机固态电解质 6Li-7Li置换实验结果[17](1 ppm=10-6)"</p> <img src="https://esst.cip.com.cn/fileup/2095-4239/FIGURE/2024-13-1/Images/2095-4239-2024-13-1-178/ACFB3BB8-64C7-4385-B393-9F61565BB4A5-F002.jpg" style="display:block;margin:0 auto;width: 80%;"/> </div> </div> <div class="caption text-center hidden-xs hidden-sm"> 图1 </div> </div> </div> <div class="col-lg-3 col-md-4 col-sm-6"> <div class="thumbnail"> <a class="figureClass" href="#figureClass34241" data-toggle="tooltip" data-placement="bottom" data-original-title="图2  (a) 通过单脉冲(黑线)和饱和反转脉冲(红线和蓝线)的方法测得的Li6-3y Al y La3Zr1.5W0.5O陶瓷电解质的 6Li魔角旋转谱[20];(b) Li6-3y Al y La3Zr1.5W0.5O固态电解质的二维交换谱[20];(c) PEO-LAGP复合固态电解质 6Li-7Li置换实验结果[21];(d) PVDF-LATP复合固态电解质离子传输示意图[3]" data-original-title="图2  (a) 通过单脉冲(黑线)和饱和反转脉冲(红线和蓝线)的方法测得的Li6-3y Al y La3Zr1.5W0.5O陶瓷电解质的 6Li魔角旋转谱[20];(b) Li6-3y Al y La3Zr1.5W0.5O固态电解质的二维交换谱[20];(c) PEO-LAGP复合固态电解质 6Li-7Li置换实验结果[21];(d) PVDF-LATP复合固态电解质离子传输示意图[3]"> <img src="https://esst.cip.com.cn/fileup/2095-4239/FIGURE/2024-13-1/Images/2095-4239-2024-13-1-178/thumbnail/ACFB3BB8-64C7-4385-B393-9F61565BB4A5-F003.jpg"> </a> <div style='display:none'> <div id='figureClass34241' style='padding:10px; background:#fff;'> <p style="text-align: center;"><b>图2</b></p> <p style="text-align: center;">(a) 通过单脉冲(黑线)和饱和反转脉冲(红线和蓝线)的方法测得的Li6-3y Al y La3Zr1.5W0.5O陶瓷电解质的 6Li魔角旋转谱[20];(b) Li6-3y Al y La3Zr1.5W0.5O固态电解质的二维交换谱[20];(c) PEO-LAGP复合固态电解质 6Li-7Li置换实验结果[21];(d) PVDF-LATP复合固态电解质离子传输示意图[3]"</p> <img src="https://esst.cip.com.cn/fileup/2095-4239/FIGURE/2024-13-1/Images/2095-4239-2024-13-1-178/ACFB3BB8-64C7-4385-B393-9F61565BB4A5-F003.jpg" style="display:block;margin:0 auto;width: 80%;"/> </div> </div> <div class="caption text-center hidden-xs hidden-sm"> 图2 </div> </div> </div> <div class="col-lg-3 col-md-4 col-sm-6"> <div class="thumbnail"> <a class="figureClass" href="#figureClass34242" data-toggle="tooltip" data-placement="bottom" data-original-title="图3  LiTFSI-PEO固态电解质固体核磁结果:(a) 固态电解质 7Li谱以及 (b), (c) 7Li-7Li和 6Li-6Li二维交换谱;(d), (e) 1H-6Li交叉极化谱及其异核相关谱;(f) 复合电解质中锂离子扩散路径示意图[30]" data-original-title="图3  LiTFSI-PEO固态电解质固体核磁结果:(a) 固态电解质 7Li谱以及 (b), (c) 7Li-7Li和 6Li-6Li二维交换谱;(d), (e) 1H-6Li交叉极化谱及其异核相关谱;(f) 复合电解质中锂离子扩散路径示意图[30]"> <img src="https://esst.cip.com.cn/fileup/2095-4239/FIGURE/2024-13-1/Images/2095-4239-2024-13-1-178/thumbnail/ACFB3BB8-64C7-4385-B393-9F61565BB4A5-F004.jpg"> </a> <div style='display:none'> <div id='figureClass34242' style='padding:10px; background:#fff;'> <p style="text-align: center;"><b>图3</b></p> <p style="text-align: center;">LiTFSI-PEO固态电解质固体核磁结果:(a) 固态电解质 7Li谱以及 (b), (c) 7Li-7Li和 6Li-6Li二维交换谱;(d), (e) 1H-6Li交叉极化谱及其异核相关谱;(f) 复合电解质中锂离子扩散路径示意图[30]"</p> <img src="https://esst.cip.com.cn/fileup/2095-4239/FIGURE/2024-13-1/Images/2095-4239-2024-13-1-178/ACFB3BB8-64C7-4385-B393-9F61565BB4A5-F004.jpg" style="display:block;margin:0 auto;width: 80%;"/> </div> </div> <div class="caption text-center hidden-xs hidden-sm"> 图3 </div> </div> </div> <div class="col-lg-3 col-md-4 col-sm-6"> <div class="thumbnail"> <a class="figureClass" href="#figureClass34243" data-toggle="tooltip" data-placement="bottom" data-original-title="图4  (a) BTO-LLTO纳米线的作用机制;(b) 复合固态电解质 6Li-7Li置换实验结果[31]" data-original-title="图4  (a) BTO-LLTO纳米线的作用机制;(b) 复合固态电解质 6Li-7Li置换实验结果[31]"> <img src="https://esst.cip.com.cn/fileup/2095-4239/FIGURE/2024-13-1/Images/2095-4239-2024-13-1-178/thumbnail/ACFB3BB8-64C7-4385-B393-9F61565BB4A5-F005.jpg"> </a> <div style='display:none'> <div id='figureClass34243' style='padding:10px; background:#fff;'> <p style="text-align: center;"><b>图4</b></p> <p style="text-align: center;">(a) BTO-LLTO纳米线的作用机制;(b) 复合固态电解质 6Li-7Li置换实验结果[31]"</p> <img src="https://esst.cip.com.cn/fileup/2095-4239/FIGURE/2024-13-1/Images/2095-4239-2024-13-1-178/ACFB3BB8-64C7-4385-B393-9F61565BB4A5-F005.jpg" style="display:block;margin:0 auto;width: 80%;"/> </div> </div> <div class="caption text-center hidden-xs hidden-sm"> 图4 </div> </div> </div> <div class="col-lg-3 col-md-4 col-sm-6"> <div class="thumbnail"> <a class="figureClass" href="#figureClass34244" data-toggle="tooltip" data-placement="bottom" data-original-title="图5  固态电池LiFePO4(LFP)正极的锂离子输运机制示意图:(a) 传统正极的传输路径;(b) 添加La2Zr2O7 纳米线(LZONs)的复合正极的传输路径;(c) 传统正极在空隙和 (d) PEO黏结剂中的锂离子传输路径;(e) 锂盐在PEO黏结剂中的解离;(f) 在嵌入LZONs和 (g) PEO@LZONs复合材料黏结剂的复合正极内的“固体-聚合物-固体”弹性锂离子传输路径;(h) 锂盐在PEO@LZONs黏结剂中的解离和对TFSI- 阴离子的吸附;(i) LZONs的锂离子传输隧道 (j) 循环后正极 7Li核磁谱[46]" data-original-title="图5  固态电池LiFePO4(LFP)正极的锂离子输运机制示意图:(a) 传统正极的传输路径;(b) 添加La2Zr2O7 纳米线(LZONs)的复合正极的传输路径;(c) 传统正极在空隙和 (d) PEO黏结剂中的锂离子传输路径;(e) 锂盐在PEO黏结剂中的解离;(f) 在嵌入LZONs和 (g) PEO@LZONs复合材料黏结剂的复合正极内的“固体-聚合物-固体”弹性锂离子传输路径;(h) 锂盐在PEO@LZONs黏结剂中的解离和对TFSI- 阴离子的吸附;(i) LZONs的锂离子传输隧道 (j) 循环后正极 7Li核磁谱[46]"> <img src="https://esst.cip.com.cn/fileup/2095-4239/FIGURE/2024-13-1/Images/2095-4239-2024-13-1-178/thumbnail/ACFB3BB8-64C7-4385-B393-9F61565BB4A5-F006.jpg"> </a> <div style='display:none'> <div id='figureClass34244' style='padding:10px; background:#fff;'> <p style="text-align: center;"><b>图5</b></p> <p style="text-align: center;">固态电池LiFePO4(LFP)正极的锂离子输运机制示意图:(a) 传统正极的传输路径;(b) 添加La2Zr2O7 纳米线(LZONs)的复合正极的传输路径;(c) 传统正极在空隙和 (d) PEO黏结剂中的锂离子传输路径;(e) 锂盐在PEO黏结剂中的解离;(f) 在嵌入LZONs和 (g) PEO@LZONs复合材料黏结剂的复合正极内的“固体-聚合物-固体”弹性锂离子传输路径;(h) 锂盐在PEO@LZONs黏结剂中的解离和对TFSI- 阴离子的吸附;(i) LZONs的锂离子传输隧道 (j) 循环后正极 7Li核磁谱[46]"</p> <img src="https://esst.cip.com.cn/fileup/2095-4239/FIGURE/2024-13-1/Images/2095-4239-2024-13-1-178/ACFB3BB8-64C7-4385-B393-9F61565BB4A5-F006.jpg" style="display:block;margin:0 auto;width: 80%;"/> </div> </div> <div class="caption text-center hidden-xs hidden-sm"> 图5 </div> </div> </div> <div class="col-lg-3 col-md-4 col-sm-6"> <div class="thumbnail"> <a class="figureClass" href="#figureClass34245" data-toggle="tooltip" data-placement="bottom" data-original-title="图6  (a), (b) 原位固体核磁共振锂金属信号的等高线图及对应的充放电曲线;(c), (d), (e), (f) 四种体系中的固体核磁共振锂金属信号的积分结果[50]" data-original-title="图6  (a), (b) 原位固体核磁共振锂金属信号的等高线图及对应的充放电曲线;(c), (d), (e), (f) 四种体系中的固体核磁共振锂金属信号的积分结果[50]"> <img src="https://esst.cip.com.cn/fileup/2095-4239/FIGURE/2024-13-1/Images/2095-4239-2024-13-1-178/thumbnail/ACFB3BB8-64C7-4385-B393-9F61565BB4A5-F007.jpg"> </a> <div style='display:none'> <div id='figureClass34245' style='padding:10px; background:#fff;'> <p style="text-align: center;"><b>图6</b></p> <p style="text-align: center;">(a), (b) 原位固体核磁共振锂金属信号的等高线图及对应的充放电曲线;(c), (d), (e), (f) 四种体系中的固体核磁共振锂金属信号的积分结果[50]"</p> <img src="https://esst.cip.com.cn/fileup/2095-4239/FIGURE/2024-13-1/Images/2095-4239-2024-13-1-178/ACFB3BB8-64C7-4385-B393-9F61565BB4A5-F007.jpg" style="display:block;margin:0 auto;width: 80%;"/> </div> </div> <div class="caption text-center hidden-xs hidden-sm"> 图6 </div> </div> </div> <div class="col-lg-3 col-md-4 col-sm-6"> <div class="thumbnail"> <a class="figureClass" href="#figureClass34246" data-toggle="tooltip" data-placement="bottom" data-original-title="图7  (a) LPSC和Li2S-LiI粉末混合物的二维交换光谱;(b), (c) 交叉峰强度对 Tmix 的函数;(d), (e) 通过拟合 (b), (d) 中的数据获得的变温扩散系数;(f) Li2S(LiI)-LPSC-C正极混合物中提出的Li+ 传输机制示意图[62]" data-original-title="图7  (a) LPSC和Li2S-LiI粉末混合物的二维交换光谱;(b), (c) 交叉峰强度对 Tmix 的函数;(d), (e) 通过拟合 (b), (d) 中的数据获得的变温扩散系数;(f) Li2S(LiI)-LPSC-C正极混合物中提出的Li+ 传输机制示意图[62]"> <img src="https://esst.cip.com.cn/fileup/2095-4239/FIGURE/2024-13-1/Images/2095-4239-2024-13-1-178/thumbnail/ACFB3BB8-64C7-4385-B393-9F61565BB4A5-F008.jpg"> </a> <div style='display:none'> <div id='figureClass34246' style='padding:10px; background:#fff;'> <p style="text-align: center;"><b>图7</b></p> <p style="text-align: center;">(a) LPSC和Li2S-LiI粉末混合物的二维交换光谱;(b), (c) 交叉峰强度对 Tmix 的函数;(d), (e) 通过拟合 (b), (d) 中的数据获得的变温扩散系数;(f) Li2S(LiI)-LPSC-C正极混合物中提出的Li+ 传输机制示意图[62]"</p> <img src="https://esst.cip.com.cn/fileup/2095-4239/FIGURE/2024-13-1/Images/2095-4239-2024-13-1-178/ACFB3BB8-64C7-4385-B393-9F61565BB4A5-F008.jpg" style="display:block;margin:0 auto;width: 80%;"/> </div> </div> <div class="caption text-center hidden-xs hidden-sm"> 图7 </div> </div> </div> <div class="col-lg-3 col-md-4 col-sm-6"> <div class="thumbnail"> <a class="figureClass" href="#figureClass34247" data-toggle="tooltip" data-placement="bottom" data-original-title="图8  LiV2O5 和Li2V2O5 与LAGP的界面及其对离子传输的影响[69]" data-original-title="图8  LiV2O5 和Li2V2O5 与LAGP的界面及其对离子传输的影响[69]"> <img src="https://esst.cip.com.cn/fileup/2095-4239/FIGURE/2024-13-1/Images/2095-4239-2024-13-1-178/thumbnail/ACFB3BB8-64C7-4385-B393-9F61565BB4A5-F009.jpg"> </a> <div style='display:none'> <div id='figureClass34247' style='padding:10px; background:#fff;'> <p style="text-align: center;"><b>图8</b></p> <p style="text-align: center;">LiV2O5 和Li2V2O5 与LAGP的界面及其对离子传输的影响[69]"</p> <img src="https://esst.cip.com.cn/fileup/2095-4239/FIGURE/2024-13-1/Images/2095-4239-2024-13-1-178/ACFB3BB8-64C7-4385-B393-9F61565BB4A5-F009.jpg" style="display:block;margin:0 auto;width: 80%;"/> </div> </div> <div class="caption text-center hidden-xs hidden-sm"> 图8 </div> </div> </div> </div> <!--end--> </div> </div> </div> <div class="panel panel-default" > <div class="panel-heading" role="tab" id="cankaowenxian" onClick="xianshi(this)"> <a name="reference"></a> <h4 class="panel-title"> <a id="reference" class="collapsed" href="javascript:;"> 参考文献 <span class="badge badge-info">75</span> </a> </h4> </div> <div id="collapseThree" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingThree" style="display: none;"> <div class="panel-body"> <!----> <table width="98%" border="0" align="center" cellpadding="0" cellspacing="8"> <tr> <td valign='top' align='right' style="padding-right:13px;">1</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>LI S, ZHANG S Q, SHEN L, et al. Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries[J]. Advanced Science, 2020, 7(5): 1903088.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">2</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>LEI D N, HE Y B, HUANG H J, et al. Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery[J]. Nature Communications, 2019, 10: 4244.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">3</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>YANG K, CHEN L K, MA J B, et al. Stable interface chemistry and multiple ion transport of composite electrolyte contribute to ultra-long cycling solid-state LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub>/lithium metal batteries[J]. Angewandte Chemie International Edition, 2021, 60(46): 24668-24675.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">4</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">5</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>ZHU J P, XIANG Y X, ZHAO J, et al. Insights into the local structure, microstructure and ionic conductivity of silicon doped NASICON-type solid electrolyte Li<sub>1.3</sub>Al<sub>0.3</sub>Ti<sub>1.7</sub>P<sub>3</sub>O<sub>12</sub>[J]. Energy Storage Materials, 2022, 44: 190-196.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">6</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>MI J S, CHEN L K, MA J B, et al. Defect strategy in solid-state lithium batteries[J]. Small Methods, 2023: 2301162.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">7</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>LI C, SHEN M, HU B, JAP-CS. Solid-state NMR and EPR methods for metal ion battery research [J]. Acta Physico-Chimica Sini, 2020, 36(4):1902019.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">8</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>ZHANG H, SHEN Y, YU Y, et al. Advances in the application of solid-state nuclear magnetic resonance for the study of ion diffusion mechanism in battery materials[J]. Energy Storage Science and Technology, 2020, 9: 78.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">9</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>SHI Y, TANG M J A P C S. NMR/EPR Investigation of rechargeable batteries[J]. Acta Phys Chim Sin, 2019, 36: 1-9.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">10</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>钟贵明, 刘子庚, 王大为, 等. 锂/钠离子电池材料的固体核磁共振研究进展[J]. 电化学, 2016, 22(3): 231-243.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;"></td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>ZHONG G M, LIU Z G, WANG D W, et al. Recent progress in solid-state NMR study of electrode/electrolyte materials for lithium/sodium ion batteries[J]. Journal of Electrochemistry, 2016, 22(3): 231-243.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">11</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>GANAPATHY S, YU C A, VAN ECK E R H, et al. Peeking across grain boundaries in a solid-state ionic conductor[J]. ACS Energy Letters, 2019, 4(5): 1092-1097.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">12</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>DAWSON J A, CANEPA P, CLARKE M J, et al. Toward understanding the different influences of grain boundaries on ion transport in sulfide and oxide solid electrolytes[J]. Chemistry of Materials, 2019, 31(14): 5296-5304.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">13</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>MIARA L J, ONG S P, MO Y F, et al. Effect of Rb and Ta doping on the ionic conductivity and stability of the garnet Li<sub>7+2</sub> <i>x</i><sub>-Y</sub>(La<sub>3-</sub> <i>x</i>Rb<i>x</i>)(Zr<sub>2-</sub> <i>y</i>Ta<i>y</i>)O<sub>12</sub> (0≤<i>x</i>≤0.375, 0≤<i>y</i>≤1) superionic conductor-a first principles investigation[J]. ECS Meeting Abstracts, 2013, (8): 576.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">14</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in garnet-type Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub>[J]. Angewandte Chemie International Edition, 2007, 46(41): 7778-7781.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">15</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>DAWSON J A, CANEPA P, FAMPRIKIS T, et al. Atomic-scale influence of grain boundaries on Li-ion conduction in solid electrolytes for all-solid-state batteries[J]. Journal of the American Chemical Society, 2018, 140(1): 362-368.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">16</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>VINOD CHANDRAN C, SYLKE P, ELENA W, et al. Solid-state NMR investigations on the structure and dynamics of the ionic conductor Li<sub>1+</sub> <i>x</i>Al<i>x</i>Ti<sub>2-</sub> <i>x</i>(PO4)<sub>3</sub> (0.0≤<i>x</i>≤1.0)[J]. The Journal of Physical Chemistry C, 2016, 120(16): 8436-8442.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">17</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>BIAO J, HAN B, CAO Y D, et al. Inhibiting formation and reduction of Li<sub>2</sub>CO<sub>3</sub> to LiC<i>x</i> at grain boundaries in garnet electrolytes to prevent Li penetration[J]. Advanced Materials, 2023, 35(12): 2208951.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">18</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>GEIGER C A, ALEKSEEV E, LAZIC B, et al. Crystal chemistry and stability of "Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub>" garnet: A fast lithium-ion conductor[J]. Inorganic Chemistry, 2011, 50(3): 1089-1097.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">19</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>WANG D W, ZHONG G M, PANG W K, et al. Toward understanding the lithium transport mechanism in garnet-type solid electrolytes: Li<sup>+</sup> ion exchanges and their mobility at octahedral/tetrahedral sites[J]. Chemistry of Materials, 2015, 27(19): 6650-6659.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">20</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>XIANG Y X, ZHENG G R, ZHONG G M, et al. Toward understanding of ion dynamics in highly conductive lithium ion conductors: Some perspectives by solid state NMR techniques[J]. Solid State Ionics, 2018, 318: 19-26.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">21</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>LIU M, CHENG Z, GANAPATHY S, et al. Tandem interface and bulk Li-ion transport in a hybrid solid electrolyte with microsized active filler[J]. ACS Energy Letters, 2019, 4(9): 2336-2342.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">22</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>ZHENG J, TANG M X, HU Y Y. Lithium ion pathway within Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub>-polyethylene oxide composite electrolytes[J]. Angewandte Chemie International Edition, 2016, 55(40): 12538-12542.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">23</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>ZHENG J, HU Y Y. New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 4113-4120.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">24</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>PAN K C, ZHANG L, QIAN W W, et al. A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries[J]. Advanced Materials, 2020, 32(17): 2000399.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">25</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>ZHAO L, YU X N, JIAO J Y, et al. Building cross-phase ion transport channels between ceramic and polymer for highly conductive composite solid-state electrolyte[J]. Cell Reports Physical Science, 2023, 4(5): 101382.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">26</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>MI J S, MA J B, CHEN L K, et al. Topology crafting of polyvinylidene difluoride electrolyte creates ultra-long cycling high-voltage lithium metal solid-state batteries[J]. Energy Storage Materials, 2022, 48: 375-383.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">27</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>SIMON F J, HANAUER M, HENSS A, et al. Properties of the interphase formed between argyrodite-type Li<sub>6</sub>PS<sub>5</sub>Cl and polymer-based PEO<sub>10</sub>: LiTFSI[J]. ACS Applied Materials & Interfaces, 2019, 11(45): 42186-42196.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">28</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>SIMON F J, HANAUER M, RICHTER F H, et al. Interphase formation of PEO<sub>20</sub>: LiTFSI-Li<sub>6</sub>PS<sub>5</sub>Cl composite electrolytes with lithium metal[J]. ACS Applied Materials & Interfaces, 2020, 12(10): 11713-11723.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">29</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>ZHENG J, WANG P B, LIU H Y, et al. Interface-enabled ion conduction in Li<sub>10</sub>GeP<sub>2</sub>S<sub>12</sub>-poly (ethylene oxide) hybrid electrolytes[J]. ACS Applied Energy Materials, 2019, 2(2): 1452-1459.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">30</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>LIU M, ZHANG S N, VAN ECK E R V, et al. Improving Li-ion interfacial transport in hybrid solid electrolytes[J]. Nature Nanotechnology, 2022, 17: 959-967.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">31</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>SHI P R, MA J B, LIU M, et al. A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries[J]. Nature Nanotechnology, 2023, 18(6): 602-610.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">32</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>BROGIOLI D, LANGER F, KUN R, et al. Space-charge effects at the Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub>/poly (ethylene oxide) interface[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11999-12007.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">33</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>CHEN W P, DUAN H, SHI J L, et al. Bridging interparticle Li<sup>+</sup> conduction in a soft ceramic oxide electrolyte[J]. Journal of the American Chemical Society, 2021, 143(15): 5717-5726.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">34</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>LI J, CAI Y J, CUI Y Y, et al. Fabrication of asymmetric bilayer solid-state electrolyte with boosted ion transport enabled by charge-rich space charge layer for -20~70 ℃ lithium metal battery[J]. Nano Energy, 2022, 95: 107027.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">35</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>WANG C, LIU M, THIJS M, et al. High dielectric Barium titanate porous scaffold for efficient Li metal cycling in anode-free cells[J]. Nature Communications, 2021, 12: 6536.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">36</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>JIANG B B, IOCOZZIA J, ZHAO L, et al. Barium titanate at the nanoscale: Controlled synthesis and dielectric and ferroelectric properties[J]. Chemical Society Reviews, 2019, 48(4): 1194-1228.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">37</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>KALININ S V, JOHNSON C Y, BONNELL D A. Domain polarity and temperature induced potential inversion on the BaTiO<sub>3</sub>(100) surface[J]. Journal of Applied Physics, 2002, 91(6): 3816-3823.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">38</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>TAKADA K, OHTA N, ZHANG L Q, et al. Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte[J]. Solid State Ionics, 2012, 225: 594-597.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">39</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>WU B B, WANG S Y, et al. Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems[J]. Journal of Materials Chemistry A, 2016, 4(40): 15266-15280.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">40</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>XIA S H, ZHAO Y, YAN J H, et al. Dynamic regulation of lithium dendrite growth with electromechanical coupling effect of soft BaTiO<sub>3</sub> ceramic nanofiber films[J]. ACS Nano, 2021, 15(2): 3161-3170.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">41</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>YU C, GANAPATHY S, DE KLERK N J J, et al. Unravelling Li-ion transport from picoseconds to seconds: Bulk versus interfaces in an argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl-Li<sub>2</sub>S all-solid-state Li-ion battery[J]. Journal of the American Chemical Society, 2016, 138(35): 11192-11201.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">42</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>WANG C H, ADAIR K R, LIANG J W, et al. Solid-state plastic crystal electrolytes: Effective protection interlayers for sulfide-based all-solid-state lithium metal batteries[J]. Advanced Functional Materials, 2019, 29(26): 1900392.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">43</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>SHI K, WAN Z P, YANG L, et al. In Situ construction of an ultra-stable conductive composite interface for high-voltage all-solid-state lithium metal batteries[J]. Angewandte Chemie International Edition, 2020, 132(29): 11882-11886.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">44</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>HAO X G, ZHAO Q A, SU S M, et al. Constructing multifunctional interphase between Li<sub>1.4</sub>Al<sub>0.4</sub>Ti<sub>1.6</sub>(PO<sub>4</sub>)<sub>3</sub> and Li metal by magnetron sputtering for highly stable solid-state lithium metal batteries[J]. Advanced Energy Materials, 2019, 9(34): 1901604.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">45</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>WAN Z P, SHI K, HUANG Y F, et al. Three-dimensional alloy interface between Li<sub>6.4</sub>La<sub>3</sub>Zr<sub>1.4</sub>Ta<sub>0.6</sub>O<sub>12</sub> and Li metal to achieve excellent cycling stability of all-solid-state battery[J]. Journal of Power Sources, 2021, 505: 230062.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">46</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>MA J B, ZHONG G M, SHI P R, et al. Constructing a highly efficient "solid-polymer-solid" elastic ion transport network in cathodes activates the room temperature performance of all-solid-state lithium batteries[J]. Energy & Environmental Science, 2022, 15(4): 1503-1511.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">47</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>WAN Z P, LEI D N, YANG W, et al. All-solid-state batteries: Low resistance-integrated all-solid-state battery achieved by Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder[J]. Advanced Functional Materials, 2019, 29(1): 1805301.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">48</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>LING H J, SHEN L, HUANG Y F, et al. Integrated structure of cathode and double-layer electrolyte for highly stable and dendrite-free all-solid-state Li-metal batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(51): 56995-57002.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">49</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>XIAO G Y, XU H, BAI C, et al. Progress and perspectives of <i>in situ</i> polymerization method for lithium-based batteries[J]. Interdisciplinary Materials, 2023, 2(4): 609-634.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">50</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>LIANG Z T, XIANG Y X, WANG K J, et al. Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy[J]. Nature Communications, 2023, 14: 259.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">51</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>TAN D H S, WU E A, NGUYEN H, et al. Elucidating reversible electrochemical redox of Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte[J]. ACS Energy Letters, 2019, 4(10): 2418-2427.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">52</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>LEE Y G, FUJIKI S, JUNG C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes[J]. Nature Energy, 2020, 5(4): 299-308.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">53</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>PAN H, ZHANG M H, CHENG Z, et al. Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability[J]. Science Advances, 2022, 8(15): eabn4372.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">54</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>LIU S J, ZHOU L, HAN J A, et al. Super long-cycling all-solid-state battery with thin Li<sub>6</sub>PS<sub>5</sub>Cl-based electrolyte[J]. Advanced Energy Materials, 2022, 12(25): 2200660.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">55</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>LI Y, ARNOLD W, HALACOGLU S, et al. Phase-transition interlayer enables high-performance solid-state sodium batteries with sulfide solid electrolyte[J]. Advanced Functional Materials, 2021, 31(28): 2101636.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">56</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>XU R C, HAN F D, JI X, et al. Interface engineering of sulfide electrolytes for all-solid-state lithium batteries[J]. Nano Energy, 2018, 53: 958-966.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">57</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>WANG C, SUN X L, YANG L, et al. <i>In situ</i> ion-conducting protective layer strategy to stable lithium metal anode for all-solid-state sulfide-based lithium metal batteries[J]. Advanced Materials Interfaces, 2021, 8(1): 2001698.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">58</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>LUO S T, LIU X Y, ZHANG X A, et al. Nanostructure of the interphase layer between a single Li dendrite and sulfide electrolyte in all-solid-state Li batteries[J]. ACS Energy Letters, 2022, 7(9): 3064-3071.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">59</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>YUAN Y, CHEN L K, LI Y H, et al. Functional LiTaO<sub>3</sub> filler with tandem conductivity and ferroelectricity for PVDF-based composite solid-state electrolyte[J]. Energy Materials and Devices, 2023, 1(1): 9370004.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">60</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>TAO J M, CHEN Y, BHARDWAJ A, et al. Combating Li metal deposits in all-solid-state battery via the piezoelectric and ferroelectric effects[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(41): e2211059119.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">61</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>GU T, CHEN L K, HUANG Y F, et al. Engineering ferroelectric interlayer between Li<sub>1.3</sub>Al<sub>0.3</sub>Ti<sub>1.7</sub>(PO<sub>4</sub>)<sub>3</sub> and lithium metal for stable solid-state batteries operating at room temperature[J]. Energy & Environmental Materials, 2023, 6: e12531.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">62</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>LIU M, WANG C, ZHAO C L, et al. Quantification of the Li-ion diffusion over an interface coating in all-solid-state batteries via NMR measurements[J]. Nature Communications, 2021, 12: 5943.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">63</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>BANERJEE A, TANG H M, WANG X F, et al. Revealing nanoscale solid-solid interfacial phenomena for long-life and high-energy all-solid-state batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 43138-43145.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">64</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>KOERVER R, AYGÜN I, LEICHTWEIß T, et al. Capacity fade in solid-state batteries: Interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes[J]. Chemistry of Materials, 2017, 29(13): 5574-5582.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">65</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>KOERVER R, WALTHER F, AYGÜN I, et al. Redox-active cathode interphases in solid-state batteries[J]. Journal of Materials Chemistry A, 2017, 5(43): 22750-22760.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">66</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>VARDAR G, BOWMAN W J, LU Q Y, et al. Structure, chemistry, and charge transfer resistance of the interface between Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> electrolyte and LiCoO<sub>2</sub> cathode[J]. Chemistry of Materials, 2018, 30(18): 6259-6276.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">67</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>SCHWIETERT T K, ARSZELEWSKA V A, WANG C, et al. Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes[J]. Nature Materials, 2020, 19(4): 428-435.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">68</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>CULVER S P, KOERVER R, ZEIER W, et al. On the functionality of coatings for cathode active materials in thiophosphate‐based all‐solid‐state batteries [J]. Advanced Energy Materials, 2019, 9(24): 1900626.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">69</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>CHENG Z, LIU M, GANAPATHY S, et al. Revealing the impact of space-charge layers on the Li-ion transport in all-solid-state batteries[J]. Joule, 2020, 4(6): 1311-1323.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">70</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nature Materials, 2019, 18(12): 1278-1291.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">71</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>ZOU Z Y, LI Y J, LU Z H, et al. Mobile ions in composite solids[J]. Chemical Reviews, 2020, 120(9): 4169-4221.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">72</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>LIANG C C. Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes[J]. Journal of the Electrochemical Society, 1973, 120(10): 1289.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">73</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>GUO X, MATEI I, JAMNIK J, et al. Defect chemical modeling of mesoscopic ion conduction in nanosized CaF<sub>2 </sub>/ BaF<sub>2</sub> multilayer heterostructures [J]. Physical Review B, 2007, 76(12): 125429.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">74</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>BAIUTTI F, LOGVENOV G, GREGORI G, et al. High-temperature superconductivity in space-charge regions of lanthanum cuprate induced by two-dimensional doping[J]. Nature Communications, 2015, 6: 8586.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">75</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>LU G Z, GENG F S, GU S Y, et al. Distinguishing the effects of the space-charge layer and interfacial side reactions on Li<sub>10</sub>GeP<sub>2</sub>S<sub>12</sub>-based all-solid-state batteries with stoichiometric-controlled LiCoO<sub>2</sub>[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 25556-25565.</span> </td> </tr> </table> <!--end--> </div> </div> </div> <div class="panel panel-default"> <div class="panel-heading" role="tab" id="xiangguanwenzhang" onClick="xianshi(this)"> <h4 class="panel-title"> <a id="relatedArticles" class="collapsed" href="javascript:;"> 相关文章 <span class="badge badge-info">15</span> </a> </h4> </div> <div id="collapseFour" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingFour" style="display: none;"> <div class="panel-body"> <table width="100%" border="0" height='25'> <tr> <td width="30" valign='top' style="line-height:30px;">[1]</td> <td class="J_zhaiyao" style="line-height:30px;" valign='top'>武美玲, 牛磊, 李世友, 赵冬妮. <a href="https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2023.0809" target="_blank" class="txt_zhaiyao">正极预锂化添加剂用于锂离子电池的研究进展</a>[J]. 储能科学与技术, 2024, 13(3): 759-769.</td> </tr> <tr> <td width="30" valign='top' style="line-height:30px;">[2]</td> <td class="J_zhaiyao" style="line-height:30px;" valign='top'>欧阳意梅, 赵蒙蒙, 钟贵明, 彭章泉. <a href="https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2023.0816" target="_blank" class="txt_zhaiyao">电化学储能界面的核磁共振谱学研究方法</a>[J]. 储能科学与技术, 2024, 13(1): 157-166.</td> </tr> <tr> <td width="30" valign='top' style="line-height:30px;">[3]</td> <td class="J_zhaiyao" style="line-height:30px;" valign='top'>李卓, 郭新. <a href="https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2023.0848" target="_blank" class="txt_zhaiyao">面向高比能固态电池的聚合物基电解质固化技术</a>[J]. 储能科学与技术, 2024, 13(1): 212-230.</td> </tr> <tr> <td width="30" valign='top' style="line-height:30px;">[4]</td> <td class="J_zhaiyao" style="line-height:30px;" valign='top'>徐熙祥, 赵越, 阮明岳, 李强. <a href="https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2023.0707" target="_blank" class="txt_zhaiyao">基于磁性测试揭示<strong>CoO</strong>储锂机理</a>[J]. 储能科学与技术, 2024, 13(1): 12-23.</td> </tr> <tr> <td width="30" valign='top' style="line-height:30px;">[5]</td> <td class="J_zhaiyao" style="line-height:30px;" valign='top'>李枫, 程晓斌, 罗锦达, 姚宏斌. <a href="https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2023.0821" target="_blank" class="txt_zhaiyao">金属氯化物固态电解质及其全固态电池研究现状与展望</a>[J]. 储能科学与技术, 2024, 13(1): 193-211.</td> </tr> <tr> <td width="30" valign='top' style="line-height:30px;">[6]</td> <td class="J_zhaiyao" style="line-height:30px;" valign='top'>黄永浩, 臧国景, 朱霨亚, 廖友好, 李伟善. <a href="https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2023.0128" target="_blank" class="txt_zhaiyao"><strong>LiF</strong>添加剂改善含锂陶瓷隔膜与<strong>4.35 V LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub></strong> 正极的界面稳定性</a>[J]. 储能科学与技术, 2023, 12(8): 2361-2369.</td> </tr> <tr> <td width="30" valign='top' style="line-height:30px;">[7]</td> <td class="J_zhaiyao" style="line-height:30px;" valign='top'>赵争光, 陈振营, 翟光群, 张希, 庄小东. <a href="https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2023.0236" target="_blank" class="txt_zhaiyao"><strong>Sc/O</strong>掺杂硫化物固态电解质的制备及全固态电池性能</a>[J]. 储能科学与技术, 2023, 12(8): 2412-2423.</td> </tr> <tr> <td width="30" valign='top' style="line-height:30px;">[8]</td> <td class="J_zhaiyao" style="line-height:30px;" valign='top'>郝增辉, 刘训良, 孟缘, 孟楠, 温治. <a href="https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2023.0097" target="_blank" class="txt_zhaiyao">电极界面微观结构对固态锂离子电池性能的影响</a>[J]. 储能科学与技术, 2023, 12(7): 2095-2104.</td> </tr> <tr> <td width="30" valign='top' style="line-height:30px;">[9]</td> <td class="J_zhaiyao" style="line-height:30px;" valign='top'>张佳怡, 翁素婷, 王兆翔, 王雪锋. <a href="https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2023.0253" target="_blank" class="txt_zhaiyao">石墨负极界面<strong>SEI</strong>膜与锂离子电池热失控</a>[J]. 储能科学与技术, 2023, 12(7): 2105-2118.</td> </tr> <tr> <td width="30" valign='top' style="line-height:30px;">[10]</td> <td class="J_zhaiyao" style="line-height:30px;" valign='top'>张慎然, 徐立环, 苏畅. <a href="https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2023.0184" target="_blank" class="txt_zhaiyao">不同碳含量对<strong>SiO/C</strong>负极电化学性能的影响</a>[J]. 储能科学与技术, 2023, 12(6): 1784-1793.</td> </tr> <tr> <td width="30" valign='top' style="line-height:30px;">[11]</td> <td class="J_zhaiyao" style="line-height:30px;" valign='top'>时文超, 刘宇, 张博冕, 李琪, 韩春华, 麦立强. <a href="https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2023.0089" target="_blank" class="txt_zhaiyao">电解液添加剂稳定水系电池锌负极界面的研究进展</a>[J]. 储能科学与技术, 2023, 12(5): 1589-1603.</td> </tr> <tr> <td width="30" valign='top' style="line-height:30px;">[12]</td> <td class="J_zhaiyao" style="line-height:30px;" valign='top'>余永诗, 夏先明, 黄弘扬, 姚雨, 芮先宏, 钟国彬, 苏伟, 余彦. <a href="https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2023.0324" target="_blank" class="txt_zhaiyao">钠金属负极人工界面保护层的研究进展</a>[J]. 储能科学与技术, 2023, 12(5): 1380-1391.</td> </tr> <tr> <td width="30" valign='top' style="line-height:30px;">[13]</td> <td class="J_zhaiyao" style="line-height:30px;" valign='top'>张文, 李爽, 陈诚, 谌强. <a href="https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2022.0718" target="_blank" class="txt_zhaiyao">原位固化对硅氧负极性能的影响</a>[J]. 储能科学与技术, 2023, 12(4): 1045-1050.</td> </tr> <tr> <td width="30" valign='top' style="line-height:30px;">[14]</td> <td class="J_zhaiyao" style="line-height:30px;" valign='top'>申晓宇, 朱璟, 岑官骏, 乔荣涵, 郝峻丰, 田孟羽, 季洪祥, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. <a href="https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2023.0096" target="_blank" class="txt_zhaiyao">锂电池百篇论文点评(<strong>2022.12.1</strong>—<strong>2023.1.31</strong>)</a>[J]. 储能科学与技术, 2023, 12(3): 639-653.</td> </tr> <tr> <td width="30" valign='top' style="line-height:30px;">[15]</td> <td class="J_zhaiyao" style="line-height:30px;" valign='top'>张慧敏, 王京, 王一博, 郑家新, 邱景义, 曹高萍, 张浩. <a href="https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2022.0504" target="_blank" class="txt_zhaiyao">锂离子电池<strong>SEI</strong>多尺度建模研究展望</a>[J]. 储能科学与技术, 2023, 12(2): 366-382.</td> </tr> </table> </div> </div> </div> <div class="panel panel-default" id="bianjituijian" style="display:none;"> <div class="panel-heading" role="tab" id="tuijianwenzhang" onClick="xianshi(this)"> <h4 class="panel-title"> <a id="recommendedArticles" class="collapsed" href="javascript:;"> 编辑推荐 <span class="badge badge-info" id="recommendedArticlesCount"></span> </a> </h4> </div> <div id="collapseFour" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingFour" style="display: none;"> <div class="panel-body" id="recommendedArticles-list"> </div> </div> </div> <div class="panel panel-default" > <div class="panel-heading" role="tab" id="Metrics" onClick="xianshi(this)"> <h4 class="panel-title"> <a class="collapsed" href="javascript:;" > Metrics </a> </h4> </div> <div id="collapseFive" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingFive" style="display: none;"> <div class="panel-body"> <table width="98%" border="0" cellspacing="0" cellpadding="0"> <tr> <td width="24" height="32"></td> <td colspan="2" bgcolor="#E0EEF7"><span class="STYLE1">阅读次数</span></td> </tr> <tr> <td width="24" height="5"></td> <td colspan="2" bgcolor="#FFFFFF"></td> </tr> <tr> <td height="153"></td> <td width="110" valign="top" bgcolor="#EFEFEF" style="line-height:150%"> <strong>全文</strong><br /> <span class="STYLE2"><div id="FullText"></div></span> </td> <td valign="top"> <table width="63%" border="0" cellspacing="0" cellpadding="0"> <tr> <td><div id="HtmlPdfVersion"></div></td> </tr> </table> <br /> <table width="63%" border="0" cellspacing="0" cellpadding="0"> <tr> <td colspan="3"><div id="FromHtmlPdf"></div></td> </tr> </table> <br /> <div id="DownloadDistribution"></div> <div id="DownloadCountryDistribution"></div> </td> </tr> <tr> <td></td> <td colspan="2" height=5></td> </tr> <tr> <td height="158"></td> <td valign="top" bgcolor="#efefef" style="line-height:150%"> <strong>摘要</strong><br> <span class="STYLE2"><div id="AbstractCount"></div></span> </td> <td valign="top"> <table width="40%" height="52" border="0" cellpadding="0" cellspacing="0"> <tr> <td><div id="AbstractVersion"></div></td> </tr> <tr> <td><div id="FromAbstract"></div></td> </tr> </table> <br /> <div id="AbstractDistribution"></div> <div id="AbstractCountryDistribution"></div> </td> </tr> <tr> <td></td> <td colspan="2" height=5></td> </tr> <!-- <tr> <td height="30"></td> <td bgcolor="#E0EEF7"><p><strong>Cited</strong></p></td> <td> <div id="citations"></div> </td> </tr> <tr> <td height="8"></td> <td height="8"></td> <td height="8"></td> </tr> <tr> <td height="31"> </td> <td bgcolor="#E0EEF7"><strong>Shared</strong></td> <td><strong>  <a class="shareCount"></a></strong></td> </tr> --> <tr> <td height="5"></td> <td></td> <td></td> </tr> </table> </div> </div> </div> <div class="panel panel-default" > <div class="panel-heading" role="tab" id="benwenpingjia" onClick="xianshi(this)"> <h4 class="panel-title"> <a id="pingjia" class="collapsed" href="javascript:;" > 本文评价 </a> </h4> </div> <div id="collapseSix" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingSix" style="display: none;"> <div class="panel-body"> <div id="ArticleEstimate"> <div id="Estimate"></div> <div id="Comment"></div> </div> </div> </div> </div> </div> <!--折叠面板end--> </div> <div class="col-lg-1 col-md-2 hidden-print hidden-xs hidden-sm"> <!--右快速导航--> <div id="plane" class="pinned"> <ul class="plane-bd list-unstyled"> <li style="width:100px;"> <a href="javascript:;" onclick="zhaiyao('#zhaiyao');"> <span>摘要</span> <i class="glyphicon glyphicon-text-color"></i> </a> </li> <li style="width:100px;"> <a href="javascript:;" onclick="zhaiyao('#tubiao');"> <span>图/表</span> <i class="glyphicon glyphicon-picture"></i> </a> </li> <li style="width:100px;"> <a href="javascript:;" onclick="zhaiyao('#cankaowenxian');"> <span>参考文献</span> <i class="glyphicon glyphicon-equalizer"></i> </a> </li> <li style="width:100px;"> <a href="javascript:;" onclick="zhaiyao('#xiangguanwenzhang');"> <span>相关文章</span> <i class="glyphicon glyphicon-list-alt"></i> </a> </li> <li style="width:100px;" id="bianjituijianli" style="display:none;"> <a href="javascript:;" onclick="zhaiyao('#tuijianwenzhang');"> <span>编辑推荐</span> <i class="glyphicon glyphicon-list-alt"></i> </a> </li> <li style="width:100px;"> <a href="javascript:;" onclick="zhaiyao('#Metrics');"> <span>Metrics</span> <i class="glyphicon glyphicon-stats"></i> </a> </li> <li style="width:100px;"> <a href="javascript:;" onclick="zhaiyao('#benwenpingjia');"> <span>本文评价</span> <i class="glyphicon glyphicon-stats"></i> </a> </li> </ul> <div class="plane-ft"> <a href="#goTop" target="_self" title="回顶部" style="color:#ff6600;width:100px;" class="text-center">回顶部</a> </div> </div> <!--右快速导航--> </div> </div> </div> <!--底部--> <div class="container whitebg" style="height: 16px"></div> <div class="container"> <div class="row"> <footer class="text-center footer"> <p> <br> Copyright © 2020 《储能科学与技术》 版权所有 All Rights Reserved.<br> 凡注明本刊独家的版权为《储能科学与技术》所有,欢迎转载但请务必注明来源。如果本文侵犯您的权益,请联系本站删除!<br> 凡注明“来源:XXX(非《储能科学与技术》)”,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。其他媒体如需转载,请与稿件来源方联系,如产生任何问题与本网无关。<br> 地址:北京东城区青年湖南街13号化工出版社3层 电话:86-10-64519601/64519602/64519643 E-mail:esst2012@cip.com.cn; esst_edit@126.com<br> 京公网安备 11010102001997号 <a href="https://beian.miit.gov.cn" style="color:#fff;" target="_blank">京ICP备12046843号-1</a> </p> </footer> </div> </div> <iframe src="https://esst.cip.com.cn/EN/article/updateBrowseNum.jsp?articleid=2537" height=0 scrolling=no border=0 frameborder=0 allowtransparency="true"></iframe> </body> </html> <script type="text/javascript"> var hash = window.location.hash; loadMetricsTabc(); loadArticleEstimate(); $(function() { $('#container').tabs(1); }); $("#MetricsTabC").click(function(){ loadMetricsTabc(); }); $("#ArticleEstimateTab").click(function(){ loadArticleEstimate(); }); function loadArticleEstimate(){ $("#Estimate").empty(); $("#Estimate").append("<iframe src=\"https://esst.cip.com.cn/include/showEstimate.do?articleId=2537\" width=\"1000\" height=\"85\" scrolling=no frameborder=0 allowtransparency=\"true\" style=\"padding: 20\"></iframe>"); $("#Comment").empty(); $("#Comment").append("<iframe src=\"https://esst.cip.com.cn/CN/comment/showCommentList.do?type=article&typeId=2537\" width=\"1000\" style=\"min-height:700px; width:100%;\" scrolling=no frameborder=0 allowtransparency=\"true\" style=\"padding: 20\" id=\"ifr-comment\"></iframe>"); } $(function(){ $('.tabs-nav').children('li').eq(0).addClass('tabs-selected'); $('.tabs-nav').children('li').last().removeClass('tabs-selected'); $('#AbstractTab').removeClass('tabs-hide'); $('#MetricsTab').addClass('tabs-hide'); }) function loadMetricsTabc(){ $("#FullText").load("https://esst.cip.com.cn/CN/matrix/matrix.do?articleId=2537&type=FullText"); $("#HtmlPdfVersion").load("https://esst.cip.com.cn/CN/matrix/matrix.do?articleId=2537&type=HtmlPdfVersion"); $("#FromHtmlPdf").load("https://esst.cip.com.cn/CN/matrix/matrix.do?articleId=2537&type=FromHtmlPdf"); $("#AbstractVersion").load("https://esst.cip.com.cn/CN/matrix/matrix.do?articleId=2537&type=AbstractVersion"); $("#AbstractCount").load("https://esst.cip.com.cn/CN/matrix/matrix.do?articleId=2537&type=AbstractCount"); $("#FromAbstract").load("https://esst.cip.com.cn/CN/matrix/matrix.do?articleId=2537&type=FromAbstract"); //$("#citations").load("https://esst.cip.com.cn/CN/matrix/matrix.do?articleId=2537&type=citations"); $("#DownloadDistribution").empty(); $("#DownloadDistribution").append("<iframe src=\"https://esst.cip.com.cn/CN/matrix/matrix.do?articleId=2537&type=DownloadDistribution\" width=\"600\" height=\"300\" scrolling=no frameborder=0 allowtransparency=\"true\" style=\"padding: 20\"></iframe>"); $("#DownloadCountryDistribution").empty(); $("#DownloadCountryDistribution").append("<iframe src=\"https://esst.cip.com.cn/CN/matrix/matrix.do?articleId=2537&type=DownloadCountryDistribution\" width=\"550\" height=\"300\" scrolling=no frameborder=0 allowtransparency=\"true\"></iframe>"); $("#AbstractDistribution").empty(); $("#AbstractDistribution").append("<iframe src=\"https://esst.cip.com.cn/CN/matrix/matrix.do?articleId=2537&type=AbstractDistribution\" width=\"600\" height=\"300\" scrolling=no frameborder=0 allowtransparency=\"true\" style=\"padding: 20\"></iframe>"); $("#AbstractCountryDistribution").empty(); $("#AbstractCountryDistribution").append("<iframe src=\"https://esst.cip.com.cn/CN/matrix/matrix.do?articleId=2537&type=AbstractCountryDistribution\" width=\"550\" height=\"300\" scrolling=no frameborder=0 allowtransparency=\"true\" style=\"padding: 20\"></iframe>"); } </script> <!--css必引 --> <link rel="stylesheet" href="https://esst.cip.com.cn/images/2095-4239/css/abstract.css">