储能科学与技术

• 储能科学与技术 •    

钠离子卤化物固态电解质研究进展与展望

钱艺华1, 赵耀洪1, 王青1, 郭鹏2, 裴大婷2, 曾以柔2   

  1. 1.广东省电力装备可靠性企业重点实验室 广东电网有限责任公司电力科学研究院,广东 广州 510000
    2.广东新型储能国家研究院有限公司,广东 广州 510000

Research progress and prospect of sodium halide solid-state electrolytes

YIHUA Qian1, YAOHONG Zhao1, QING Wang1, PENG GUO2, DATING Pei2, Yirou Zeng2   

  1. 1.Guangdong Key Laboratory of Electric Power Equipment Reliability, Electric Power Research Institute of Guangdong Power Grid Co. , Ltd. , Guangzhou, China
    2.National Institute of Guandong Advanced Energy Storage, Guangzhou, China

摘要:

开发综合性能优异的新型固态电解质是实现高安全、高比能全固态电池的关键。在诸多电解质材料体系中,卤化物电解质因具有离子电导率高、氧化电位高、柔韧性好、与正极相容性好等优势,受到学术界与产业界的广泛关注。目前,锂离子卤化物研究已相对较多,而钠离子卤化物电解质研发尚处于起步阶段,存在诸多不足。不同类型的钠卤化物在晶体结构、离子输运机制及电化学稳定性方面存在显著差异,对其结构-性能关系的系统总结有助于指导高性能电解质的开发。本文综述了钠卤化物固态电解质的最新研究进展,重点解析了不同晶体结构对钠离子输运机制的影响,探讨了缺陷工程、无序化及双阴离子结构等调控策略对离子电导率的提升作用,同时总结了不同合成方法对材料微观结构的影响。此外,本文系统评估了钠卤化物电解质在全固态电池中的界面稳定性、电化学稳定窗口及循环性能。最后,本文进一步展望其未来发展方向,包括新型材料设计、界面改性优化及高性能全固态电池构筑等,以期推动钠离子卤化物电解质及储能技术的发展。

关键词: 钠离子卤化物电解质, 离子传输机制, 界面改性, 固态电池

Abstract:

Developing novel solid-state electrolytes with excellent comprehensive performance is key to achieving high safety and high energy density all-solid-state batteries. Among various electrolyte material systems, halide electrolytes have attracted widespread attention from both academia and industry due to their advantages, such as high ionic conductivity, high oxidation potential, high ductility, and good compatibility with cathode materials. Currently, lithium-ion halide electrolytes have been intensively studied, while the development of sodium-ion halide electrolytes is still in its early stages and faces several challenges. Sodium halides exhibit differences in crystal structure, ion transport mechanisms, and electrochemical performances. A systematic summary of their structure-property relationships is essential for guiding the development of high-performance electrolytes. This review presents recent advancements in sodium halide solid electrolytes, with a particular focus on the impact of different crystal structures on sodium-ion transport mechanisms and the role of defect, structural disorder, and polyanionic frameworks in enhancing ionic conductivity. The effects of various synthesis methods on the microstructure of these materials are also summarized. Furthermore, the interfacial stability, electrochemical stability window, and cycling performance of sodium halide electrolytes in all-solid-state batteries are systematically evaluated. Finally, this review looks forward to future development directions, aiming to advance the development of sodium-ion halide electrolytes and next-generation energy storage technologies.

Key words: Sodium halide solid electrolytes, Ion transport mechanism, Interface modification, Solid-state battery

中图分类号: