储能科学与技术

• 储能科学与技术 •    

硫化物固态电解质膜制备技术研究进展

高林娜1,2(), 钟桂云1,2, 张艳中1,2, 刘慧1,2()   

  1. 1.浙江省化工研究院有限公司,浙江 杭州 310023
    2.中化蓝天集团有限公司,浙江 杭州 310052
  • 收稿日期:2025-06-24 修回日期:2025-07-08
  • 通讯作者: 刘慧 E-mail:gaolinna@sinochem.com;liuhui8@ sinochem.com
  • 作者简介:高林娜(1991—),女,硕士,工程师,主要从事含氟聚合物加工与应用,E-mail:gaolinna@sinochem.com
  • 基金资助:
    浙江省“尖兵”“领雁”计划资助项目(2025C01181)

Research Progress in Fabrication Techniques of Sulfide-Based Solid Electrolyte Membranes

Linna GAO1,2(), GuiYun ZHONG1,2, YanZhong ZHANG1,2, Hui LIU1,2()   

  1. 1.Zhejiang Research Institute of Chemical Industry Co. , Ltd, Hangzhou, 320023, Zhejiang, China
    2.Sinochem Lantian Co Ltd, Hangzhou, 310052, Zhejiang, China
  • Received:2025-06-24 Revised:2025-07-08
  • Contact: Hui LIU E-mail:gaolinna@sinochem.com;liuhui8@ sinochem.com

摘要:

硫化物基全固态锂离子电池(ASSLBs)因有望解决传统锂电池有限能量密度和安全性的问题,受到了行业的广泛关注。这主要依赖于硫化物固态电解质(SEs)优异的室温离子电导率(10-³-10-² S/cm)和良好的机械柔性。然而,为了满足电解质的机械强度而制造厚电解质膜,为了降低界面阻抗制备硫化物材料与正极复合膜,导致了全固态电池的能量低于理论值。由此可以看出,硫化物固态电解质膜对全固态电池的性能至关重要,制备超薄、强韧的硫化物固态电解质薄膜(SSEs)是解决该问题的关键之一。本文通过对近年文献的探讨,先简要分析了硫化物固态电解质膜的标准和制备挑战,接着综述了硫化物固态电解质膜的制备技术,详细介绍了各种方法的优缺点。制备技术主要分别为湿法和干法,湿法工艺包括冷/热压、流延法、渗透法、3D打印等;干法工艺包括粉末压缩和粘结剂原纤化。流延法和渗透法都能够进行大规模薄膜制备,可以与传统液态锂电池电极工业产线相结合。粘结剂原纤化因无溶剂,大大降低了环境危害和制造成本。最后,对硫化物固态电解质膜的未来发展方向进行展望。

关键词: 硫化物固态电解质膜, 湿法, 浆料, 粘结剂, 无溶剂

Abstract:

Sulfide based all solid state lithium batteries (ASSLBs) have attracted widespread interest in the industry due to their potential to address the limited energy density and safety concerns of conventional L-ion batteries,while benefiting from the high ionic conductivity (10-3-10-2 S/cm) and ductility of sulfide solid electrolytes(SEs). However, the production of thick electrolyte membranes to obtain enough mechanical strength, and the preparation of sulfide materials and positive electrode composite membranes to reduce interface impedance, resulted in a lower energy density in ASSLBs compared to their theoretical energy density. From this, it can be seen that sulfide solid electrolyte membranes are crucial for the performance of ASSLBs, and the fabrication of ultra-thin and strong sulfide-based solid electrolyte (SSEs) membranes stands as a critical solution to this challenge. This paper begins with a concise analysis of the criteria and preparation challenges for thin SSEs membranes through a review of recent literature. It then systematically summarizes existing preparation techniques, detailing the advantages and limitations of each method. These techniques are broadly categorized into wet-process (e.g., cold/hot pressing, tape casting, infiltration, 3D printing and et al) and dry-process approaches (e.g., powder compaction and binder fibrillation). Notably, tape casting and infiltration methods demonstrate potential for large-scale fabrication and compatibility with conventional liquid lithium-ion battery electrode production lines. Binder fibrillation, being solvent-free, significantly reduces environmental impact and manufacturing costs. Finally, the paper outlines future development directions for thin SSEs membranes.

Key words: sulfide-based solid electrolyte membranes, wet-process, slurry, binder, solvent-free

中图分类号: