• 储能科学与技术 •
高林娜1,2(), 钟桂云1,2, 张艳中1,2, 刘慧1,2(
)
收稿日期:
2025-06-24
修回日期:
2025-07-08
通讯作者:
刘慧
E-mail:gaolinna@sinochem.com;liuhui8@ sinochem.com
作者简介:
高林娜(1991—),女,硕士,工程师,主要从事含氟聚合物加工与应用,E-mail:gaolinna@sinochem.com;
基金资助:
Linna GAO1,2(), GuiYun ZHONG1,2, YanZhong ZHANG1,2, Hui LIU1,2(
)
Received:
2025-06-24
Revised:
2025-07-08
Contact:
Hui LIU
E-mail:gaolinna@sinochem.com;liuhui8@ sinochem.com
摘要:
硫化物基全固态锂离子电池(ASSLBs)因有望解决传统锂电池有限能量密度和安全性的问题,受到了行业的广泛关注。这主要依赖于硫化物固态电解质(SEs)优异的室温离子电导率(10-³-10-² S/cm)和良好的机械柔性。然而,为了满足电解质的机械强度而制造厚电解质膜,为了降低界面阻抗制备硫化物材料与正极复合膜,导致了全固态电池的能量低于理论值。由此可以看出,硫化物固态电解质膜对全固态电池的性能至关重要,制备超薄、强韧的硫化物固态电解质薄膜(SSEs)是解决该问题的关键之一。本文通过对近年文献的探讨,先简要分析了硫化物固态电解质膜的标准和制备挑战,接着综述了硫化物固态电解质膜的制备技术,详细介绍了各种方法的优缺点。制备技术主要分别为湿法和干法,湿法工艺包括冷/热压、流延法、渗透法、3D打印等;干法工艺包括粉末压缩和粘结剂原纤化。流延法和渗透法都能够进行大规模薄膜制备,可以与传统液态锂电池电极工业产线相结合。粘结剂原纤化因无溶剂,大大降低了环境危害和制造成本。最后,对硫化物固态电解质膜的未来发展方向进行展望。
中图分类号:
高林娜, 钟桂云, 张艳中, 刘慧. 硫化物固态电解质膜制备技术研究进展[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0590.
Linna GAO, GuiYun ZHONG, YanZhong ZHANG, Hui LIU. Research Progress in Fabrication Techniques of Sulfide-Based Solid Electrolyte Membranes[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0590.
表2
流延法制备硫化物固态电解质膜总结"
硫化物 | 溶剂 | 粘结剂 | 厚度/μm | 离子电导率/ mS cm-1 | 参考文献 |
---|---|---|---|---|---|
Li6PS5Cl | 无水乙腈 | PEGDA-DMAEMA-LiTFSI聚合物 | 40 | 1.23 | [ |
Li5.4PS4.4Cl1.6 | 异丁酸异丁酯基溶剂 | M-PVDF | 26 | 2 | [ |
Li9.88GEP1.96Sb0.04S11.88Cl0.12 | 甲苯 | 聚甲基丙烯酸甲酯/丙烯酸正丁酯 | 8 | 1.9 | [ |
Li6PS5Cl0.5Br0.5 | 丁酸己酯-二溴甲烷 | NBR-LiTFSI | 100 | - | [ |
Li6PS5Cl | 二甲苯和异丁酸异丁酯 | 丙烯酸脂类 | 40 | 1.31 | [ |
Li6PS5Cl | 二溴乙烷 | NBR-Li(G3)TFSI | 70 | 3.3 | [ |
Li6PS5Cl | 无水乙腈 | PEO | 65 | 0.28 | [ |
75Li2S·25P2S5 | 苯甲醚 | 无 | 60-75 | 0.52 | [ |
Li6PS5Cl | 甲苯-异丁酸异丁酯 | NBR | 50 | 1.12 | [ |
Li6PS5Cl | 甲苯 | 两亲性乙基纤维素 | 47 | 1.65 | [ |
[1] | TARASCON J M, ARMAND, M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414, 359-367. |
[2] | WANG, X T, GU Z Y, ANG E H, et al. Prospects for managing end‐of‐life lithium‐ion batteries: present and future[J]. Interdisciplinary Materials, 2022, 1(3): 417-433. |
[3] | NITTA N, WU F, LEE J T, et al. Li-ion battery materials: present and future[J]. Materials Today, 2015, 18(5): 252-264. |
[4] | CHOI N S, CHEN Z, FREUNBERGER S A,et al. Challenges Facing Lithium Batteries and Electrical Double‐Layer Capacitors[J]. Angewandte Chemie International Edition, 2012, 51(40): 9994-10024. |
[5] | XU X L, HUI K S, HUI K N,et al. Recent Advances in the Interface Design of Solid-State Electrolytes for Solid-State Energy Storage Devices[J]. Materials Horizons, 2020, 7(5). |
[6] | JANEK, J, ZEIER, W G. Challenges in speeding up solid-state battery development[J]. Nature energy Energy, 2023, 8 (3): 230-240. |
[7] | WANG C, WANG C, LI M,et al. Design of thin solid-state electrolyte films for safe and energy-dense batteries[J]. Materials Today, 2024:72: 235–254. |
[8] | XI G, XIAO M, WANG S J, et al. Polymer‐based solid electrolytes: material selection, design, and application[J]. Advanced Functional Materials,2022, 31, 2007598. |
[9] | Ren Y, Danner S, Maier J, et al. Oxide-based solid-state batteries: a perspective on composite cathode architecture[J]. Advanced Energy Materials, 2022, 13(1): 2201939. |
[10] | Li X, Zhang X, Liu X, et al. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries[J]. Energy & Environmental Science, 2020, 13(5): 1429-1461. |
[11] | Wu J, Liu S, Han F, et al. Lithium/sulfide all-solid-state batteries using sulfide electrolytes[J]. Advanced Materials, 2021, 33(22): 2000751. |
[12] | CAO D, ZHAO Y, SUN X, et al. Defect Engineering in Perovskite Oxides for Enhanced Electrocatalytic Oxygen Evolution [J]. ACS Energy Letters, 2020, 5(11): 3468-3475. |
[13] | FAN L Z, HE H, NAN C W, et al. Flexible Composite Solid Electrolytes: A Paradigm Shift in Energy Storage Technology [J]. Nature Reviews Materials, 2021, 6 (12): 1003. |
[14] | LEE J, LEE T, CHAR K, et al. Emerging Strategies in Nanoscale Catalyst Design for Sustainable Energy Conversion[J]. Accounts of Chemical Research, 2021, 54 (15): 3390. |
[15] | PARK K H, BAI Q, KIM D H, et al. Solid Electrolyte Design Strategies for Lithium Batteries[J]. Advanced Energy Materials, 2018, 8(18): 1800035. |
[16] | GONG X Q, WANG J S, ZHONG L F, et al. Nanocomposite design for solid-state lithium metal batteries: Progress, challenge and prospects[J]. Advanced Materials, 2023, 35(42): 2206013. |
[17] | ZHANG Z H, WU L P, ZHOU D, et al. Flexible Sulfide Electrolyte Thin Membrane with Ultrahigh Ionic Conductivity for All-Solid-State Lithium Batteries [J]. Nano Letters, 2021, 21(12): 5233-5239.. |
[18] | ZHAO X, SHEN L, ZHANG N, et al. Toluene tolerated Li9.88GeP1.96Sb0.04S11.88Cl0.12 solid electrolyte toward ultrathin membranes for all-solid-state lithium batteries[J]. Nano Letters, 2023, 23(1): 227-234. |
[19] | LIU H, LIANG Y H, WANG C, et al. Priority and Prospect of Sulfide-Based Solid-Electrolyte Membrane [J]. Advanced Materials, 2023, 35(12): 2206013. |
[20] | MAULER L, DUFFNER F, ZEIER W G, et al. Cost Analysis of Solid-State Battery Manufacturing[J]. Energy & Environmental Science, 2021, 14(9): 4712-4725. |
[21] | NIKODIMOS Y, HUANG C J, TAKLU B W, et al. Polymer Electrolytes for High-Energy Lithium Batteries[J]. Energy & Environmental Science, 2022, 15(3): 991-1008. |
[22] | HUANG K J, CEDER G, OLIVETTI E A. Data - Driven Discovery of Solid Electrolytes[J]. Joule, 2021, 5(3): 564-578. |
[23] | WANG S, ZHANG X, LIU S J,et al. High-conductivity free-standing Li6PS5Cl/poly(vinylidene difluoride) composite solid electrolyte membranes for lithium-ion batteries[J].Journal of Materiomics, 2020, 6(1): 70-76. |
[24] | LIU G, YANG J, WU J, et al. Ultra-thin free-standing sulfide solid electrolyte film for cell-level high energy density all-solid-state lithium batteries[J]. Energy Storage Materials, 2021, 38: 249-254. |
[25] | CAO D, ZHAO Y, SUN X, et al. Amphipathic binder integrating ultrathin and highly ion-conductive sulfide membrane for cell-level high-energy-density all-solid-state batteries[J]. Advanced Materials, 2021, 33(12): 2105505. |
[26] | ZHAO X, SHEN L, ZHANG N, et al. Stable binder boosting sulfide solid electrolyte thin membrane for all-solid-state lithium batteries[J]. Energy Materials Advances, 2024, 5: Article 0074. |
[27] | LI R, MAO Y, CHEN N, et al. Modified poly(vinylidene fluoride) polymer binder enables ultrathin sulfide solid electrolyte membrane for all-solid-state batteries[J]. Journal of Energy Storage, 2025, 106: 114859. |
[28] | KIM K T, PARK J, LEE H, et al. Tailoring slurries using cosolvents and Li salt targeting practical all-solid-state batteries employing sulfide solid electrolytes[J]. Advanced Energy Materials, 2021, 11(18): 2003766. |
[29] | LEE Y G, FUJIKI S, JUNG C, et al. High-energy-density lithium-metal batteries enabled by interfacial engineering of sulfide solid electrolytes[J]. Nature Energy, 2020, 5(4): 299-308. |
[30] | OH D Y, NAM Y J, PARK K H, et al. Dual-phase electrolyte design for high-voltage solid-state lithium batteries[J]. Advanced Energy Materials, 2015, 5(12): 1500865. |
[31] | LUO S, WANG Z, FAN A, et al. Interface engineering of sulfide electrolytes for all-solid-state lithium batteries[J]. Journal of Power Sources, 2021, 485: 229325. |
[32] | YAMAMOTO M, TERAUCHI Y, SAKUDA A, et al. Binder-free sheet-type all-solid-state batteries with enhanced rate capabilities and high energy densities[J]. Scientific Reports, 2018, 8(1): 1212-1222. |
[33] | EMLEY B, LIANG Y, CHEN R, et al. Flexible composite electrolytes with hybrid ionic transport mechanisms[J]. Materials Today Physics, 2021, 18: 100397. |
[34] | LI Y, CAO D, ARNOLD W, et al. Scalable fabrication of freestanding sulfide electrolyte membranes via doctor-blading[J]. Energy Storage Materials, 2020, 31: 344-352. |
[35] | LIU S, WANG X, ZHANG C, et al. Super long-cycling all-solid-state battery with thin Li6PS5Cl-based electrolyte[J]. Advanced Energy Materials, 2022, 12(18): 2200660. |
[36] | NAM Y J, CHO S J, OH D Y, et al. Bendable and thin sulfide solid electrolyte film: a new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries[J]. Nano Letters, 2015, 15(5): 3317-3323. |
[37] | XU R C, LIU G, YANG J, et al. Cathode-supported all-solid-state lithium-sulfur batteries with high cell-level energy density[J]. ACS Energy Letters, 2019, 4(5): 1073-1079. |
[38] | KIM D, LEE H, ROH Y, et al. Thin, highly ionic conductive, and mechanically robust frame-based solid electrolyte membrane for all-solid state Li batteries[J]. Advanced Energy Materials, 2024, 14, 2302596. |
[39] | WANG Y T, JU J W, DONG S M, Yiyuan Yan, et al. Facile Design of Sulfide-Based all Solid-State Lithium Metal Battery: In Situ Polymerization within Self-Supported Porous Argyrodite Skeleton[J]. Advanced functional materials, 2021, 31(28), 2101523. |
[40] | KIM D H, LEE H A, SONG Y B, et al. Sheet-Type Li6PS5Cl-Infiltrated Si Anodes Fabricated by Solution Process for All-Solid-State Lithium-Ion Batteries [J]. Journal of Power Sources, 2019, 426: 143-150. |
[41] | XI L, LI Y, ZHANG D, et al. The Contact Interface Engineering of All-Sulfide-Based Solid State Batteries via Infiltrating Dissoluble Sulfide Electrolyte [J]. Energy & Environmental Materials, 2023, 6(2): e12461. |
[42] | GAO X J, ZHENG M, YANG X F, et al. Emerging Application of 3D-Printing Techniques in Lithium Batteries: From Liquid to Solid [J]. Materials Today, 2022, 59: 126-143. |
[43] | TU Z T, CHEN K Q, LIU S J, et al. 3D Printing of Solid Electrolyte and the Application in All-Solid-State Batteries [J]. Small Methods, 2025, 9(3): 2401912. |
[44] | XU F, WU Y, WANG L, et al. Low-Pressure Sulfide All-Solid-State Lithium-Metal Pouch Cell by Self-Limiting Electrolyte Design [J]. Advanced Energy Materials, 2025, 15(25): 202405369. |
[45] | CAI J, FAN Z, JIN J, et al. Expediting the Electrochemical Kinetics of 3D-Printed Sulfur Cathodes for Li–S Batteries with High Rate Capability and Areal Capacity [J]. Nano Energy, 2020, 75: 104970. |
[46] | DOERRER C, METZLER M, MATTHEWS G, et al. Spraying Li6PS5Cl and Silver-Carbon Multilayers to Facilitate Large-Scale Fabrication of All-Solid-State Batteries [J]. Device, 2024, 2(3): 100468. |
[47] | ZHANG D, XI L, LI Y, et al. Scalable Preparation of Asymmetrical Bilayer Sulfide/Halide Electrolyte Membranes for All-Solid-State Batteries with High Voltage [J]. Energy & Environmental Materials, 2025, 8(2): e12475. |
[48] | CUI Y L, LIU S F, WANG D H, et al. A Facile Way to Construct Stable and Ionic Conductive Lithium Sulfide Nanoparticles Composed Solid Electrolyte Interphase on Li Metal Anode [J]. Advanced Functional Materials, 2020, 30(45): 2006380. |
[49] | FAN B, FANG Y X, XUE B, et al. Spray-Printed Flexible Li2S Cathode with Inorganic Ion-Conductive Binder Nano-Li3PS4 [J]. ACS Applied Materials & Interfaces, 2024, 16(8): 7182-7188. |
[50] | JIANG Z, PENG H, LI J, et al. A Facile Path from Fast Synthesis of Li-Argyrodite Conductor to Dry Forming Ultrathin Electrolyte Membrane for High-Energy-Density All-Solid-State Lithium Batteries [J]. Journal of Energy Chemistry, 2022, 74: 309-316. |
[51] | WHITELEY J M, TAYNTON P, ZHANG W, et al. Ultra-Thin Solid-State Li-Ion Electrolyte Membrane Facilitated by a Self-Healing Polymer Matrix [J]. Advanced Materials, 2015, 27(42): 6922-6927. |
[52] | YERSAK T, SALVADOR J R, SCHMIDT R D, et al. Hot Pressed, Fiber-Reinforced (Li2S)70(P2S5)30 Solid-State Electrolyte Separators for Li Metal Batteries [J]. ACS Applied Energy Materials, 2019, 2(5): 3523-3531. |
[53] | HIPPAUF F, SCHUMM B, DOERFLER S, et al. Sulfide Electrolyte Integration in Flexible Solid-State Batteries [J]. Energy Storage Materials, 2019, 21: 390-398. |
[54] | SU Z K, LI G, ZHANG J J, et al. Coaxial Nanofiber Binders Integrating Thin and Robust Sulfide Solid Electrolytes for High-Performance All-Solid-State Lithium Battery [J]. Advanced Functional Materials, 2025, 35(18): 2415409. |
[55] | JIANG T, HE P, LIANG Y, et al. Interface Engineering of Sulfide Electrolyte for All-Solid-State Lithium Metal Batteries [J]. Chemical Engineering Journal, 2021, 421: 129965. |
[56] | LI D B, LIU H, WANG C, et al. High Ionic Conductive, Mechanical Robust Sulfide Solid Electrolyte Films and Interface Design for All-Solid-State Lithium Metal Batteries [J]. Advanced Functional Materials, 2024, 34(27): 2315555. |
[1] | 徐章杰, 孙铮岳, 张鑫焱, 张吉亮, 于颖超, 董闯. FeOOH包覆改性FeS锂离子电池负极材料[J]. 储能科学与技术, 2025, 14(6): 2232-2239. |
[2] | 陈育新, 杨家沐, 练成, 刘洪来. 基于相场模型的锂电池电极浆料稳定涂布窗口分析[J]. 储能科学与技术, 2023, 12(7): 2185-2193. |
[3] | 阮晶晶, 刘福园, 李珅珅, 高桂红, 刘艳侠. 碳还原法制备棒状硅基材料及其在锂浆料电池中的应用[J]. 储能科学与技术, 2023, 12(4): 1051-1058. |
[4] | 高桂红, 李珅珅, 刘福园, 巫湘坤, 刘艳侠. 颗粒级配对锂浆料电池性能的影响[J]. 储能科学与技术, 2023, 12(2): 329-338. |
[5] | 高桂红, 刘福园, 李珅珅, 巫湘坤, 刘艳侠. 二元导电剂对锂浆料电池性能的影响[J]. 储能科学与技术, 2023, 12(11): 3299-3306. |
[6] | 郭雨竹, 梁春军, 孙馥林, 宫宏康, 宋奇, 朱婷, 张晨晖. 碳电极浆料作为阴极材料的快速充放电铝离子电池[J]. 储能科学与技术, 2023, 12(1): 16-22. |
[7] | 何凤荣, 张啟文, 郭德超, 郭义敏, 郭孝东. 电极结构对(NCM+AC)/HC混合型电容器电性能的影响[J]. 储能科学与技术, 2022, 11(7): 2051-2058. |
[8] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[9] | 胡铭昌, 周雪晴, 黄雪妍, 薛建军. 无溶剂制备锌空气电极及电池性能[J]. 储能科学与技术, 2021, 10(6): 2090-2096. |
[10] | 郭德超, 郭义敏, 张啟文, 慈祥云, 何凤荣. 锂离子电池用无溶剂干法电极的制备及其性能研究[J]. 储能科学与技术, 2021, 10(4): 1311-1316. |
[11] | 李林林, 王昱杰, 门一飞, 杨伟, 邹汉波, 陈胜洲. 湿法冶金回收技术中无机酸作为浸出剂的研究进展[J]. 储能科学与技术, 2021, 10(1): 68-76. |
[12] | 李林林, 曹林娟, 麦永雄, 门一飞, 杨伟, 陈胜洲. 废旧锂离子电池有机酸湿法冶金回收技术研究进展[J]. 储能科学与技术, 2020, 9(6): 1641-1650. |
[13] | 张 彬1, 2,陈永翀1,张艳萍1,冯彩梅1, 2,刘丹丹1,何颖源1, 2. 锂浆料电池国际专利技术分析[J]. 储能科学与技术, 2017, 6(5): 1000-1007. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||