储能科学与技术

• XXXX •    

镍铁层状氢氧化物催化水电解制氢的工况研究

杨梧桐1(), 刘芳名1, 周子尧1, 李金翰1, 于勐1,2, 程方益1,2()   

  1. 1.南开大学化学学院,天津 300071
    2.物质绿色创造与制造海河实验室,天津 300192
  • 收稿日期:2025-07-07 修回日期:2025-08-18
  • 通讯作者: 程方益 E-mail:873557526@qq.com;fycheng@nankai.edu.cn
  • 作者简介:杨梧桐(1999—),男,硕士研究生,从事水电解制氢研究,E-mail:873557526@qq.com
  • 基金资助:
    国家重点研发计划(2022YFA1504000);国家自然科学基金(22121005);国家自然科学基金(22409096);国家自然科学基金(22402089)

Research on the Operating Conditions for Hydrogen Production via Water Electrolysis Using Nickel-Iron Layered Double Hydroxides

WUTONG Yang1(), FANGMING Liu1, ZIYAO Zhou1, JINHAN Li1, MENG Yu1,2, FANGYI Cheng1,2()   

  1. Nankai University College of Chemistry, Tian Jin 300071, Tian Jin, China
  • Received:2025-07-07 Revised:2025-08-18
  • Contact: FANGYI Cheng E-mail:873557526@qq.com;fycheng@nankai.edu.cn

摘要:

水电解制氢技术在可再生能源发电电力消纳中具有重要的应用潜力,而析氧反应(OER)因动力学过程缓慢,制约了水电解效率提升。镍铁层状氢氧化物(NiFe LDH)制备简便、成本低廉、催化活性优异,是研究最广泛的碱性OER催化剂,但关于其在工业条件下的应用研究仍缺乏系统研究。本文采用电沉积法在泡沫镍表面制备了自支撑镍铁层状氢氧化物催化剂,并对比分析其在三电极、阴离子交换膜单池以及工业碱水电解槽体系中的活性和稳定性,探究了不同工况下电极材料的催化活性演变规律。研究结果显示,NiFe LDH的催化活性在不同测试条件下均出现一定程度的衰减,衰减程度由高到低为:工业级电解槽 > 膜单池 > 三电极体系。三种工况条件下NiFe LDH自支撑电极的电荷转移阻抗增加,电化学活性表面积降低。电解反应前后电极分析表明,工业碱水电解槽的高温高压环境促进了铁元素的溶出,引发电极微观结构破坏、活性组分流失以及晶相转变等现象,加速催化剂性能劣化。本研究为揭示NiFe LDH丰产元素电催化剂在实验室测试与工业电解装置间的差异提供了实验依据。

关键词: 镍铁层状双氢氧化物, 碱性电解水, 三电极体系, 电解槽, 结构演变

Abstract:

Water electrolysis for hydrogen production holds significant potential for renewable energy storage. However, the oxygen evolution reaction (OER) limits the improvement of electrolytic efficiency due to its slow kinetics. Nickel–iron layered double hydroxides (NiFe LDH) is the most widely studied alkaline OER catalyst, owing to its simple preparation method, low cost, and excellent catalytic activity. Nevertheless, systematic research on its application under industrial conditions is still limited. In this work, self-supported NiFe LDH catalysts were fabricated on nickel foam via electrodeposition, and their activity and stability were systematically evaluated in three distinct systems: a three-electrode configuration, an anion exchange membrane (AEM) single cell, and an industrial alkaline electrolyzer. The evolution of catalytic performance under different operating conditions was comparatively investigated. The results reveal that the catalytic activity of NiFe LDH declines to varying extents, with the degree of degradation following the order: industrial electrolyzer > AEM single cell > three-electrode system. In all cases, the electrodes exhibited increased charge-transfer resistance and decreased electrochemically active surface area after operation. Post-electrolysis characterizations indicate that the high-temperature and high-pressure environment in the industrial alkaline electrolyzer accelerates iron leaching, leading to microstructural damage, active component loss, and phase transformation, thereby exacerbating catalyst degradation. This study provides experimental insights into the performance divergence of NiFe LDH-based earth-abundant catalysts between laboratory testing and industrial electrolysis conditions.

Key words: Nickel-Iron Layered Double Hydroxides, Alkaline Water Electrolysis, Three-Electrode System, Electrolyzer, Structural Evolution

中图分类号: