• XXXX •
杨梧桐1(), 刘芳名1, 周子尧1, 李金翰1, 于勐1,2, 程方益1,2(
)
收稿日期:
2025-07-07
修回日期:
2025-08-18
通讯作者:
程方益
E-mail:873557526@qq.com;fycheng@nankai.edu.cn
作者简介:
杨梧桐(1999—),男,硕士研究生,从事水电解制氢研究,E-mail:873557526@qq.com;
基金资助:
WUTONG Yang1(), FANGMING Liu1, ZIYAO Zhou1, JINHAN Li1, MENG Yu1,2, FANGYI Cheng1,2(
)
Received:
2025-07-07
Revised:
2025-08-18
Contact:
FANGYI Cheng
E-mail:873557526@qq.com;fycheng@nankai.edu.cn
摘要:
水电解制氢技术在可再生能源发电电力消纳中具有重要的应用潜力,而析氧反应(OER)因动力学过程缓慢,制约了水电解效率提升。镍铁层状氢氧化物(NiFe LDH)制备简便、成本低廉、催化活性优异,是研究最广泛的碱性OER催化剂,但关于其在工业条件下的应用研究仍缺乏系统研究。本文采用电沉积法在泡沫镍表面制备了自支撑镍铁层状氢氧化物催化剂,并对比分析其在三电极、阴离子交换膜单池以及工业碱水电解槽体系中的活性和稳定性,探究了不同工况下电极材料的催化活性演变规律。研究结果显示,NiFe LDH的催化活性在不同测试条件下均出现一定程度的衰减,衰减程度由高到低为:工业级电解槽 > 膜单池 > 三电极体系。三种工况条件下NiFe LDH自支撑电极的电荷转移阻抗增加,电化学活性表面积降低。电解反应前后电极分析表明,工业碱水电解槽的高温高压环境促进了铁元素的溶出,引发电极微观结构破坏、活性组分流失以及晶相转变等现象,加速催化剂性能劣化。本研究为揭示NiFe LDH丰产元素电催化剂在实验室测试与工业电解装置间的差异提供了实验依据。
中图分类号:
杨梧桐, 刘芳名, 周子尧, 李金翰, 于勐, 程方益. 镍铁层状氢氧化物催化水电解制氢的工况研究[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0618.
WUTONG Yang, FANGMING Liu, ZIYAO Zhou, JINHAN Li, MENG Yu, FANGYI Cheng. Research on the Operating Conditions for Hydrogen Production via Water Electrolysis Using Nickel-Iron Layered Double Hydroxides[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0618.
[1] | 林旗力,陈珍,王晓虎,等.基于 "电-氢-电" 过程的规模化氢储能经济性分析 [J]. 储能科学与技术,2024, 13 (06): 2068-2077. DOI: 10.19799/j.cnki.2095-4239.2023.0955.LIN Qili, CHEN Zhen, WANG Xiaohu, et al. Economic analysis of large-scale hydrogen energy storage based on "electricity-hydrogen-electricity" process[J]. Energy Storage Science and Technology, 2024, 13(06): 2068-2077. DOI: 10.19799/j.cnki.2095-4239.2023.0955. |
[2] | 俞红梅,衣宝廉.电解制氢与氢储能[J].中国工程科学,2018,20(03):58-65. DOI: CNKI:SUN:GCKX.0.2018-03-010. |
YU Hongmei, YI Baolian. Water electrolysis for hydrogen production and hydrogen energy storage[J]. Chinese Engineering Sciences, 2018, 20(03): 58-65. DOI: CNKI:SUN:GCKX.0.2018-03-010. | |
[3] | 闫旭鹏,卢启辰,任志博,等.水电解制氢用商业化阴离子交换膜发展现状 [J]. 储能科学与技术,2023, 12 (09): 2811-2822. DOI: 10.19799/j.cnki.2095-4239.2023.0271.YAN Xupeng, LU Qichen, REN Zhibo, et al. Development status of commercial anion exchange membranes for water electrolysis hydrogen production[J]. Energy Storage Science and Technology, 2023, 12(09): 2811-2822. DOI: 10.19799/j.cnki.2095-4239.2023.0271. |
[4] | 徐进,丁显,宫永立,等.电解水制氢厂站经济性分析 [J]. 储能科学与技术,2022, 11 (07): 2374-2385. DOI: 10.19799/j.cnki.2095-4239.2022.0062. |
XU Jin, DING Xian, GONG Yongli, et al. Economic analysis of water electrolysis hydrogen production plants[J]. Energy Storage Science and Technology, 2022, 11(07): 2374-2385. DOI: 10.19799/j.cnki.2095-4239.2022.0062. | |
[5] | ZHANG L R, QI F, REN R, et al. Recent advances in green hydrogen production by electrolyzing water with anion-exchange membrane[J]. Research, 2025, 8: 0677. DOI: 10.34133/research.0677. |
[6] | WANG G X, CHEN A, CHEN Y, et al. Advancements in electrochemical synthesis: Expanding from water electrolysis to dual-value-added products[J]. eScience, 2025, 5(4): 100333. DOI: 10.1016/j.esci.2024.100333. |
[7] | 常进法,肖瑶,罗兆艳,等.水电解制氢非贵金属催化剂的研究进展[J].物理化学学报,2016,32(07):1556-1592. DOI:10.3866/PKU.WHXB201604291. |
CHANG Jinfa, XIAO Yao, LUO Zhaoyan, et al. Research progress on non-noble metal catalysts for water electrolysis hydrogen production[J]. Acta Physico-Chimica Sinica, 2016, 32(07): 1556-1592. DOI:10.3866/PKU.WHXB201604291. | |
[8] | 郭丹丹,滕越,迟军,等.碱性水电解非贵金属析氧催化剂的研究进展[J].可再生能源,2022,40(01):21-26. DOI:10.13941/j.cnki.21-1469/tk.2022.01.012. |
GUO Dandan, TENG Yue, CHI Jun, et al. Research progress on non-noble metal oxygen evolution catalysts for alkaline water electrolysis[J]. Renewable Energy Resources, 2022, 40(01): 21-26. DOI:10.13941/j.cnki.21-1469/tk.2022.01.012. | |
[9] | GAO G L, ZHAO G Z, ZHU G, et al. Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction[J]. Chinese Chemical Letters, 2025, 36(1): 109557. DOI: 10.1016/j.cclet.2024.109557.9 |
[11] | 王明华,赵喆,张文浩,等.铁钴镍三元系水电解催化剂的制备及其性能研究[J].现代化工,2025,45(01):82-86. DOI:10.16606/j.cnki.issn0253-4320.2025.01.016. |
WANG Minghua, ZHAO Zhe, ZHANG Wenhao, et al. Preparation and performance study of Fe-Co-Ni ternary catalyst for water electrolysis[J]. Modern Chemical Industry, 2025, 45(01): 82-86. DOI:10.16606/j.cnki.issn0253-4320.2025.01.016. | |
[12] | 郭文君,李丹丹,王强,等.NiCoFe LDH阳极析氧催化剂的制备及性能研究[J].太阳能学报,2021,42(05):46-53. DOI:10.19912/j.0254-0096.tynxb.2019-0116. |
GUO Wenjun, LI Dandan, WANG Qiang, et al. Preparation and performance of NiCoFe LDH anode oxygen evolution catalyst[J]. Acta Energiae Solaris Sinica, 2021, 42(05): 46-53. DOI:10.19912/j.0254-0096.tynxb.2019-0116. | |
[13] | ZHOU Y, HU J L, YANG L C, et al. Recent advances of two-dimensional CoFe layered-double-hydroxides for electrocatalytic water oxidation[J]. Chinese Chemical Letters, 2022, 33(6): 2845-2855. DOI: 10.1016/j.cclet.2021.10.034.9 |
[14] | PENG L S, YANG N, YANG Y Q, et al. Atomic cation-vacancy engineering of NiFe-layered double hydroxides for improved activity and stability towards the oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2021, 60(46): 24612-24619. DOI10.1002/anie.202109938. |
[15] | 钟晓航,许卫,张文,等.碱性水电解制氢中铁杂质的影响研究进展[J].化工学报,2025,76(02):519-531. DOI:10.11949/0438-1157.20240806. |
ZHONG Xiaohang, XU Wei, ZHANG Wen, et al. Research progress on the influence of iron impurities in alkaline water electrolysis for hydrogen production[J]. CIESC Journal, 2025, 76(02): 519-531. DOI:10.11949/0438-1157.20240806. | |
[16] | KUAI C G, XU Z R, XI C, et al. Phase segregation reversibility in mixed-metal hydroxide water oxidation catalysts[J]. Nature Catalysis, 2020, 3(9): 743-753. DOI10.1038/s41929-020-0496-z. |
[17] | CHEN R, HUNG S F, ZHOU D J, et al. Layered structure causes bulk NiFe layered double hydroxide unstable in alkaline oxygen evolution reaction[J]. Advanced Materials, 2019, 31(41): 1903909. DOI:10.1002/adma.201903909. |
[18] | LU X Y, XUE H R, GONG H, et al. 2D layered double hydroxide nanosheets and their derivatives toward efficient oxygen evolution reaction[J]. Nano-Micro Letters, 2020, 12(1): 86. DOI:10.1007/s40820-020-00421-5. |
[19] | CAI Z Y, BU X M, WANG P, et al. Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction[J]. Journal of Materials Chemistry A, 2019, 7(10): 5069-5089. DOI:10.1039/c8ta11273h. |
[20] | WANG X, LIU F M, QIN H Y, et al. Electrosynthesis of transition metal coordinated polymers for active and stable oxygen evolution[J]. Angewandte Chemie International Edition, 2024, 136(39). DOI: 10.1002/ange.202409628. |
[21] | ANDRONESCU C, SEISEL S, WILDE P, et al. Influence of temperature and electrolyte concentration on the structure and catalytic oxygen evolution activity of nickel-iron layered double hydroxide[J]. Chemistry-A European Journal, 2018, 24(52): 13773-13777. DOI:10.1002/chem.201803165. |
[22] | LIU P, WANG J Y, WANG X L, et al. A superhydrophilic NiFe electrode for industrial alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2024, 49: 285-294. DOI:10.1016/j.ijhydene.2023.07.253. |
[23] | 闫芳,王涛,张超群,等.水电解制氢技术的工业应用[J].现代化工,2025,45(S1):366-369. DOI:10.16606/j.cnki.issn0253-4320.2025.S1.066. |
YAN Fang, WANG Tao, ZHANG Chaoqun, et al. Industrial application of water electrolysis for hydrogen production technology[J]. Modern Chemical Industry, 2025, 45(S1): 366-369. DOI:10.16606/j.cnki.issn0253-4320.2025.S1.066. | |
[24] | XU Z C, WU Z S. Scalable production of high-performance electrocatalysts for electrochemical water splitting at large current densities[J]. eScience, 2025, 5(4): 100334. DOI: 10.1016/j.esci.2024.100334. |
[25] | YAN Z H, SUN H M, CHEN X, et al. Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution[J]. Nature communications, 2018, 9(1): 2373. DOI:10.1038/s41467-018-04788-3. |
[26] | NAYAK S, PARIDA K M. Deciphering Z-scheme charge transfer dynamics in heterostructure NiFe-LDH/N-rGO/g-C3N4 nanocomposite for photocatalytic pollutant removal and water splitting reactions[J]. Scientific reports, 2019, 9(1): 2458. DOI:10.1038/s41598-019-39009-4 |
[27] | JAŚKANIEC S, HOBBS C, SERAL-ASCASO A, et al. Low-temperature synthesis and investigation into the formation mechanism of high quality Ni-Fe layered double hydroxides hexagonal platelets[J]. Scientific Reports, 2018, 8(1): 4179. DOI:10.1038/s41598-018-22630-0 |
[28] | BAI L C, LEE S H, Hu X L. Spectroscopic and electrokinetic evidence for a bifunctional mechanism of the oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2021, 60(6): 3095-3103. DOI:10.1002/anie.202011388. |
[1] | 徐滨, 王锐, 苏伟, 何广利, 缪平. 质子交换膜电解水技术关键材料的研究进展与展望[J]. 储能科学与技术, 2022, 11(11): 3510-3520. |
[2] | 张祖豪, 丁晓凯, 罗冬, 崔佳祥, 谢惠娴, 刘晨宇, 林展. 富锂锰基层状氧化物正极材料面临的挑战及解决方案[J]. 储能科学与技术, 2021, 10(2): 408-424. |
[3] | 陈曦, 刘骞, 徐江海, 龙施淳, 万忠民. 基于太阳能和朗肯循环的热电氢联供系统[J]. 储能科学与技术, 2021, 10(2): 611-616. |
[4] | 霍现旭, 王靖, 蒋菱, 徐青山. 氢储能系统关键技术及应用综述[J]. 储能科学与技术, 2016, 5(2): 197-203. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||