储能科学与技术

• 储能科学与技术 •    

高倍率储铵负极材料研究进展

洪振哲1(), 侯乃珲1, 吕建国2, 赵振云1(), 陈韦1()   

  1. 1.浙江理工大学材料科学与工程学院,先进纺织材料与制备技术教育部重点实验室,浙江 杭州 310018
    2.浙江大学材料科学与工程学院,硅及先进半导体材料全国重点实验室,浙江 杭州 310058
  • 收稿日期:2025-09-16 修回日期:2025-10-26
  • 通讯作者: 赵振云,陈韦 E-mail:2024316101096@mails.zstu.edu.cn;zhaozhenyun@zstu.edu.cn;wchen@zstu.edu.cn
  • 作者简介:洪振哲(2006),男,本科(在读),研究方向为铵离子电池负极材料 E-mail:2024316101096@mails.zstu.edu.cn
  • 基金资助:
    国家火炬计划项目(24210005-N);国家自然科学基金(21975214);浙江理工大学科研基金(23212091-Y);浙江理工大学科研基金(24212217-Y)

Research Progress on Ammonium-Ion Storage Anode Materials with High Rate Capabilities

Zhenzhe Hong1(), Naihui Hou1, Jianguo Lu2, Zhenyun Zhao1(), Wei Chen1()   

  1. 1.National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
    2.State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
  • Received:2025-09-16 Revised:2025-10-26
  • Contact: Zhenyun Zhao, Wei Chen E-mail:2024316101096@mails.zstu.edu.cn;zhaozhenyun@zstu.edu.cn;wchen@zstu.edu.cn

摘要:

铵离子电池与电容器作为高安全水系非金属储能体系,在下一代大规模储能系统领域的应用前景十分广阔。铵离子具有灵活的四面体结构、独特的氢键媒介电荷转移模式,水合铵离子半径尺寸较小(0.331 nm)、离子电导率较高,所以铵离子电池与电容器理论上具有高倍率优势,近年来发展十分迅速。但是,储铵负极材料种类贫乏、电化学性能较差,成为铵离子电池与电容器发展的一大阻碍。因此,梳理总结储铵负极材料的最新研究进展,对于突破铵离子电池与电容器的倍率瓶颈而言意义重大。本文首先分析了铵离子的传输/储存机制,以及其与金属离子传输/存储机制的主要区别,介绍了铵离子储存的动力学机理及评估方法,重点阐述了二维过渡金属碳化物或氮化物、过渡金属硫化物、过渡金属氧化物、有机共轭小分子、多孔有机聚合物及聚酰亚胺等储铵负极材料的结构特性、容量/倍率性能、储铵位点/机制以及改性策略,最后展望了其未来的研究方向与挑战。本文旨在为铵离子电池与电容器负极材料的开发与应用提供理论指导。

关键词: 储铵负极材料, 铵离子存储机制, 铵离子传输机制, 倍率性能

Abstract:

Ammonium-ion batteries and capacitors, as aqueous non-metallic-ion energy storage devices with high safety, have shown broad application prospects in next-generation large-scale energy storage systems. Ammonium ions feature a flexible tetrahedral structure and a distinctive hydrogen-bond-mediated charge transfer mechanism. Additionally, ammonium ions exhibit a relatively small hydrated ionic radius (0.331 nm) and high ionic conductivity, which collectively contribute to superior rate capabilities. Ammonium-ion batteries and capacitors have advanced rapidly in recent years, but the limited diversity and electrochemical performance of available anode materials remain a critical bottleneck hindering their further development. Therefore, a systematic review of recent progress in ammonium-ion storage anode materials is essential to address the current capacity and rate capability limitations of ammonium-ion batteries and capacitors. This paper first introduces the transport and storage mechanisms of ammonium ions, as well as their key distinctions from metal ions; it further elaborates on the kinetic mechanisms and evaluation methodologies. Then, it reviews the recent progress on ammonium-ion storage anode materials, including MXenes, transition metal sulfides, transition metal oxides, organic conjugated molecules, porous organic polymers, and polyimides. Their structural characteristics, performance comparison, ammonium-ion storage mechanisms, and enhancement strategies are highlighted in this section. Finally, it outlines key future challenges and perspectives in this emerging field. This review can provide some guidance to the development and practical application of ammonium-ion storage materials and devices.

Key words: Ammonium-ion storage anode materials, Ammonium-ion storage mechanisms, Ammonium-ion transport mechanisms, Rate capabilities

中图分类号: