• 储能科学与技术 •
洪振哲1(
), 侯乃珲1, 吕建国2, 赵振云1(
), 陈韦1(
)
收稿日期:2025-09-16
修回日期:2025-10-26
通讯作者:
赵振云,陈韦
E-mail:2024316101096@mails.zstu.edu.cn;zhaozhenyun@zstu.edu.cn;wchen@zstu.edu.cn
作者简介:洪振哲(2006),男,本科(在读),研究方向为铵离子电池负极材料 E-mail:2024316101096@mails.zstu.edu.cn;
基金资助:
Zhenzhe Hong1(
), Naihui Hou1, Jianguo Lu2, Zhenyun Zhao1(
), Wei Chen1(
)
Received:2025-09-16
Revised:2025-10-26
Contact:
Zhenyun Zhao, Wei Chen
E-mail:2024316101096@mails.zstu.edu.cn;zhaozhenyun@zstu.edu.cn;wchen@zstu.edu.cn
摘要:
铵离子电池与电容器作为高安全水系非金属储能体系,在下一代大规模储能系统领域的应用前景十分广阔。铵离子具有灵活的四面体结构、独特的氢键媒介电荷转移模式,水合铵离子半径尺寸较小(0.331 nm)、离子电导率较高,所以铵离子电池与电容器理论上具有高倍率优势,近年来发展十分迅速。但是,储铵负极材料种类贫乏、电化学性能较差,成为铵离子电池与电容器发展的一大阻碍。因此,梳理总结储铵负极材料的最新研究进展,对于突破铵离子电池与电容器的倍率瓶颈而言意义重大。本文首先分析了铵离子的传输/储存机制,以及其与金属离子传输/存储机制的主要区别,介绍了铵离子储存的动力学机理及评估方法,重点阐述了二维过渡金属碳化物或氮化物、过渡金属硫化物、过渡金属氧化物、有机共轭小分子、多孔有机聚合物及聚酰亚胺等储铵负极材料的结构特性、容量/倍率性能、储铵位点/机制以及改性策略,最后展望了其未来的研究方向与挑战。本文旨在为铵离子电池与电容器负极材料的开发与应用提供理论指导。
中图分类号:
洪振哲, 侯乃珲, 吕建国, 赵振云, 陈韦. 高倍率储铵负极材料研究进展[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0840.
Zhenzhe Hong, Naihui Hou, Jianguo Lu, Zhenyun Zhao, Wei Chen. Research Progress on Ammonium-Ion Storage Anode Materials with High Rate Capabilities[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0840.
| [1] | HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: present and future [J]. Chemical Society Reviews, 2017, 46(12): 3529-3614. |
| [2] | ZHANG X, XIA M, LIU T, et al. Copper hexacyanoferrate as ultra-high rate host for aqueous ammonium ion storage [J]. Chemical Engineering Journal, 2021, 421: 127767. |
| [3] | ITAYA K, ATAKA T, TOSHIMA S. Spectroelectrochemistry and Electrochemical Preparation Method of Prussian Blue Modified Electrodes [J]. Journal of the American Chemical Society, 1982, 104(18): 4767-4772. |
| [4] | LUKATSKAYA M R, MASHTALIR O, REN C E, et al. Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide [J]. Science, 2013, 341(6153): 1502-1505. |
| [5] | ZHANG X, WEI H, REN B, et al. Unlocking High‐Performance Ammonium‐Ion Batteries: Activation of In‐Layer Channels for Enhanced Ion Storage and Migration [J]. Advanced Materials, 2023, 35(40): 2304209. |
| [6] | CHEN Q, LI H, LOU X, et al. Surface Oxygen Coordination of Hydrogen Bond Chemistry for Aqueous Ammonium Ion Hybrid Supercapacitor [J]. Advanced Functional Materials, 2023, 33(17): 2214920. |
| [7] | TANG X, ZHANG S, SUN H, et al. Incorporation of Organic Benzoquinone Framework Into rGO via Strong π–π Interaction for High-Performance Aqueous Ammonium-Ion Battery [J]. Small, 2025, 21(4): 2410374. |
| [8] | HUANG F, ZHAO W, GUO Y, et al. Conjugated Enhanced Polyimide Enables High-Capacity Ammonium Ion Storage [J]. Advanced Functional Materials, 2024, 34(44): 2407313. |
| [9] | LUKATSKAYA M R, DUNN B, GOGOTSI Y. Multidimensional materials and device architectures for future hybrid energy storage [J]. Nature Communications, 2016, 7: 12647. |
| [10] | ZHAO Z, XIA K, HOU Y, et al. Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: from conductive polymers [J]. Chemical Society Reviews, 2021, 50(22): 12702-12743. |
| [11] | ZHENG W, HU X, WU M, et al. Recent advances and perspectives of electrode materials for emerging ammonium-ion storage: From mechanistic insights to practical applications [J]. Chemical Engineering Journal, 2023, 466: 143197. |
| [12] | DAI J, YANG Y, YU J, et al. Aqueous ammonium-ion hybrid supercapacitors [J]. Chemical Engineering Journal, 2024, 500: 157343. |
| [13] | DONG S, SHIN W, JIANG H, et al. Ultra-fast NH4 + storage: Strong H-bonding between NH4 + and bi-layered V2O5 [J]. Chem, 2019, 5(6): 1537-1551. |
| [14] | TIAN Z, KALE V S, WANG Y, et al. High-Capacity NH4 + Charge Storage in Covalent Organic Frameworks [J]. Journal of the American Chemical Society, 2021, 143(45): 19178-19186. |
| [15] | DAI J, YANG C, XU Y, et al. MoS2@Polyaniline for Aqueous Ammonium-Ion Supercapacitors [J]. Advanced Materials, 2023, 35(39): 2303732. |
| [16] | OKUBO M, HOSONO E, KIM J, et al. Nanosize Effect on High-Rate Li-Ion Intercalation in LiCoO2 Electrode [J]. Journal of the American Chemical Society, 2007, 129(23): 7444-7452. |
| [17] | SIMON P, GOGOTSI Y, DUNN B. Where Do Batteries End and Supercapacitors Begin? [J]. Science, 2014, 343(6176): 1210-1211. |
| [18] | TAN X, ZHANG F, CHEN D, et al. One-step hydrothermal synthesis of vanadium dioxide/carbon core–shell composite with improved ammonium ion storage for aqueous ammonium-ion battery [J]. Journal of Colloid and Interface Science, 2024, 669: 2-13. |
| [19] | LIANG G, WANG Y, HUANG Z, et al. Initiating Hexagonal MoO3 for Superb‐Stable and Fast NH4 + Storage Based on Hydrogen Bond Chemistry [J]. Advanced Materials, 2020, 32(14): 1907802. |
| [20] | CHEN Q, SONG M, ZHANG X, et al. Ammonium ion pre-intercalation stabilized tunnel h-WO3 for fast NH4 + storage [J]. Journal of Materials Chemistry A, 2022, 10(29): 15614-15622. |
| [21] | WU X, XU Y, JIANG H, et al. NH4 + topotactic insertion in Berlin Green: An exceptionally long-cycling cathode in aqueous ammonium-ion batteries [J]. ACS Applied Energy Materials, 2018, 1(7): 3077-3083. |
| [22] | LIU Q, ZHANG D, YANG Y, et al. Encapsulation of Prussian Blue Analogues with Conductive Polymers for High-Performance Ammonium-Ion Storage [J]. Advanced Energy Materials, 2025, 15(4): 2402863. |
| [23] | ZHANG X, JAVED M S, REN H, et al. Optimization of Ti3C2Tx performance through synergistic enhancement of GeOx/Ti3C2Tx heterostructures for ammonium-ion storage [J]. Chemical Engineering Journal, 2025, 504: 158582. |
| [24] | WU Y, DONG S, LV N, et al. Unlocking the High Capacity Ammonium-Ion Storage in Defective Vanadium Dioxide [J]. Small, 2022, 18(47): 2204888. |
| [25] | MAKIVIC N, HARRIS K D, TARASCON J-M, et al. Impact of Reversible Proton Insertion on the Electrochemistry of Electrode Materials Operating in Mild Aqueous Electrolytes: A Case Study with TiO2 [J]. Advanced Energy Materials, 2023, 13(3): 2203122. |
| [26] | HUANG M, HE Q, WANG J, et al. NH4 + Deprotonation at Interfaces Induced Reversible H3O+/ NH4 + Co-insertion/Extraction [J]. Angewandte Chemie International Edition, 2023, 62(14): e202218922. |
| [27] | HAN L, LUO J, ZHANG R, et al. Arrayed Heterostructures of MoS2 Nanosheets Anchored TiN Nanowires as Efficient Pseudocapacitive Anodes for Fiber-Shaped Ammonium-Ion Asymmetric Supercapacitors [J]. ACS Nano, 2022, 16(9): 14951-14962. |
| [28] | ZHANG S, ZHU K, GAO Y, et al. A Long Cycle Stability and High Rate Performance Organic Anode for Rechargeable Aqueous Ammonium-Ion Battery [J]. ACS Energy Letters, 2023, 8(2): 889-897. |
| [29] | CHEN Q, JIN J, SONG M, et al. High-energy aqueous ammonium-ion hybrid supercapacitors [J]. Advanced Materials, 2022, 34(8): 2107992. |
| [30] | LIU Q, YE F, GUAN K, et al. MnAl layered double hydroxides: A robust host for aqueous ammonium-ion storage with stable plateau and high capacity [J]. Advanced Energy Materials, 2023, 13(5): 2202908. |
| [31] | YANG D, SONG Y, ZHANG M Y, et al. Solid–liquid interfacial coordination chemistry enables high‐capacity ammonium storage in amorphous manganese phosphate [J]. Angewandte Chemie International Edition, 2022, 61(37): 202207711. |
| [32] | LI Z, ZHAO W, ZHANG Q, et al. Piezoelectric MoS2 with expanded interlayers: a flexible anode for a "zero" interfacial quasi-solid-state ammonium-ion asymmetric supercapacitor [J]. Journal of Materials Chemistry A, 2024, 12(36): 24084-24090. |
| [33] | SHAO P, LIAO Y, FENG X, et al. Electronic modulation and structural engineering of tetracyanoquinodimethane with enhanced reaction kinetics for aqueous NH4 + storage [J]. Journal of Colloid and Interface Science, 2023, 633: 199-206. |
| [34] | GAO M M, WANG F X, YANG S, et al. Engineered 2D MXene-based materials for advanced supercapacitors and micro-supercapacitors [J]. Materials Today, 2024, 72: 318-358. |
| [35] | BAO Z, LU C, LIU Q, et al. An acetate electrolyte for enhanced pseudocapacitve capacity in aqueous ammonium ion batteries [J]. Nature Communications, 2024, 15(1): 1934. |
| [36] | CHEN C, QUEK G, LIU H, et al. High-Rate Polymeric Redox in MXene-Based Superlattice-Like Heterostructure for Ammonium Ion Storage [J]. Advanced Energy Materials, 2024, 14(42): 2402715. |
| [37] | CHEN D, YE Z, JIA P, et al. Design of Ion Channel Confined Binary Metal Cu-Fe Selenides for All-Climate, High-Capacity Sodium Ion Batteries [J]. Small Methods, 2023, 8(9): 2301423. |
| [38] | AN T, LING Y, GONG S, et al. A Wearable Second Skin-Like Multifunctional Supercapacitor with Vertical Gold Nanowires and Electrochromic Polyaniline [J]. Advanced Materials Technologies, 2019, 4(3): 1800473. |
| [39] | ZHOU Y, HAN Q, LIU Y, et al. Molybdenum chalcogenides based anode materials for alkali metal ions batteries: Beyond lithium ion batteries [J]. Energy Storage Materials, 2022, 50: 308-333. |
| [40] | LIANG W, XU H, YAN J, et al. Co-construction of Weak Interlayer Constraint and Sulfur Vacancies Structure in Molybdenum Disulfide to Induce Fast Ammonium Ion Diffusion Kinetics [J]. Advanced Functional Materials, 2024, 35(16): 2420884. |
| [41] | LI H, YU R, CHEN H, et al. Thiocyanate Coordination Regulates the Interlayer Ammonium Ion Storage Structure of Molybdenum Disulfide [J]. ACS Energy Letters, 2024, 10(1): 168-176. |
| [42] | ORSINI G, TRICOLI V. Fractal mesoporosity and proton transport in WO3 xerogels [J]. Journal of Materials Chemistry, 2012, 22(45): 23861-23870. |
| [43] | LIN Y, FANG S, SU D, et al. Enhancing grain boundary ionic conductivity in mixed ionic–electronic conductors [J]. Nature Communications, 2015, 6(1): 6824. |
| [44] | ZHANG Y-Z, LIANG J, HUANG Z, et al. Ionically Conductive Tunnels in h-WO3 Enable High-Rate NH4 + Storage [J]. Advanced Science, 2022, 9(10): 2105158. |
| [45] | TIAN G, LING D, ZHANG D, et al. Reversible NH4 + intercalation/de-intercalation with phosphate promotion effect in tunnel (NH4)0.25WO3 [J]. Chemical Engineering Journal, 2024, 482: 149160. |
| [46] | WANG T, LI X, ZHAO S, et al. Rocking-chair ammonium ion battery with high rate and long-cycle life [J]. Chinese Chemical Letters, 2024, 35(1): 108449. |
| [47] | HONG J, LEE M, LEE B, et al. Biologically inspired pteridine redox centres for rechargeable batteries [J]. Nature Communications, 2014, 5(1): 5335. |
| [48] | MA Y, SUN T, NIAN Q, et al. Alloxazine as anode material for high-performance aqueous ammonium-ion battery [J]. Nano Research, 2022, 15(3): 2047-2051. |
| [49] | LIU Y, CHEN L, YANG L, et al. Porous framework materials for energy & environment relevant applications: A systematic review [J]. Green Energy & Environment, 2024, 9(2): 217-310. |
| [50] | ZHANG Y, YAO Q, SUN Y, et al. Multifunctional Porous Organic Polymer Anode with Desired Redox Potential and Capacity for High-Performance Aqueous Sodium-Ion and Ammonium-Ion Batteries [J]. ACS Applied Materials & Interfaces, 2024, 16(40): 53688-53696. |
| [51] | TIAN Z, KALE V S, THOMAS S, et al. An Ultrastable Aqueous Ammonium‐Ion Battery Using a Covalent Organic Framework Anode [J]. Advanced Materials, 2024, 36(47): 2409354. |
| [52] | LIU J, GUO K, GUO W, et al. Superconjugated Anthraquinone Carbonyl-Based Covalent Organic Framework as Anode Material for High-Performance Aqueous Ammonium-Ion Batteries [J]. Angewandte Chemie International Edition, 2025, 64(14): e202424494. |
| [53] | LI H, YANG J, CHENG J, et al. Flexible aqueous ammonium-ion full cell with high rate capability and long cycle life [J]. Nano Energy, 2020, 68: 104369. |
| [54] | YAN L, QI Y-E, DONG X, et al. Ammonium-ion batteries with a wide operating temperature window from -40 to 80 ℃ [J]. eScience, 2021, 1(2): 212-218. |
| [55] | ZHANG Y, AN Y, YIN B, et al. A novel aqueous ammonium dual-ion battery based on organic polymers [J]. Journal of Materials Chemistry A, 2019, 7(18): 11314-11320. |
| [56] | ZHOU G, AN X, ZHOU C, et al. Highly porous electroactive polyimide-based nanofibrous composite anode for all-organic aqueous ammonium dual-ion batteries [J]. Composites Communications, 2020, 22: 100519. |
| [1] | 马国政, 陈金伟, 熊兴宇, 杨振忠, 周钢, 胡仁宗. SnSb-Li4Ti5O12 复合负极材料低温高倍率储锂特性研究[J]. 储能科学与技术, 2024, 13(7): 2107-2115. |
| [2] | 李晨威, 徐世国, 余海峰, 于松民, 江浩. 镁掺杂改性LiMn0.5Fe0.5PO4/C正极材料与性能研究[J]. 储能科学与技术, 2024, 13(6): 1767-1774. |
| [3] | 卢俊杰, 彭丹, 倪文静, 杨媛, 汪靖伦. 锂/氟化碳电池电解液的研究进展[J]. 储能科学与技术, 2024, 13(5): 1487-1495. |
| [4] | 赵毅伟, 张福华, 颜顺, 丁坤, 蓝海枫, 刘辉. 普鲁士蓝类钠离子电池正极材料导电性研究进展[J]. 储能科学与技术, 2024, 13(5): 1474-1486. |
| [5] | 张吉禄, 董育辰, 宋强, 袁思鸣, 郭孝东. 多晶及单晶高镍三元材料LiNi0.9Co0.05Mn0.05O2 的可控制备及其电化学储锂特性[J]. 储能科学与技术, 2023, 12(8): 2382-2389. |
| [6] | 刘飞, 赵培文, 赵经香, 孙贤伟, 李苗苗, 王敬豪, 尹延鑫, 戴作强, 郑莉莉. 钠离子电池硬碳负极材料研究进展[J]. 储能科学与技术, 2022, 11(11): 3497-3509. |
| [7] | 王维坤, 王安邦, 金朝庆. 锂硫电池的实用化挑战[J]. 储能科学与技术, 2020, 9(2): 593-597. |
| [8] | 吴明霞, 杨重阳, 章庆林, 陈思, 安仲勋, 周义荣. 陶瓷隔膜在镍钴锰酸锂/石墨锂离子电池中性能[J]. 储能科学与技术, 2019, 8(4): 725-731. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||